

HTA on Latent TB Infection Tests

Assessing the Costeffectiveness of Latent TB Infection Tests (LTBI) in India

Submitted By:

Regional Resource Centre for HTAIn ICMR-National Institute for Research in Tuberculosis (NIRT) No. 1, Sathyamoorthy Road, Chetpet, Chennai

February 2023

Assessing the cost-effectiveness of Latent TB Infection Tests (LTBI) in India

Principal Investigator:	Dr. M Muniyandi, Scientist-D, Dept. of Health Economics
Coordinator :	Dr. Padmapriyadarsini C, Director
Co-Investigator:	Dr. Karikalan, Scientist C, Dept. of Socio Behavioural Research
	Mr. Pravin Kumar Singh, Project Scientist-C, HTAIn
	Ms. Komal Patel, Technical Officer, HTAIn
	Dr. Kavitha Rajsekar, Scientist-E, ICMR, Dept. of Health Research, Ministry of Health and Family Welfare, New Delhi
	Dr. Kirti Tyagi Technical Expert: healthcare priority setting PGIMER, Chandigarh

Version number and date: 0.5 dated 14.02.2023

Contents

Content	Page No
Summary	4
Introduction	5
Research Question	6
Objective	6
Methodology	7
Perspective	7
PICO	7
Model Structure	8
Decision tree	10
Model input parameter	11
Cost data	11
Effectiveness data	12
Cost - Effectiveness Ratio	12
Results	16
Diagnostic Accuracy	17
Base case analysis	20
Probability Sensitivity Analysis	21
One Way Sensitivity Analysis	24
Cost threshold analysis	25
Budget Impact Analysis	26
Discussion	30
Conclusion	35
Recommendation	37
Annexure-I: Literature review	38
Annexure-II	55
References	58

Summary

Latent tuberculosis infection (LTBI) is defined as a state of persistent immune response to stimulation by Mycobaterium tuberculosis (M.tb) antigens without evidence of clinically manifested active tuberculosis (TB). Hence screening and treatment of LTBI should be an important part of global TB control activities if we want to achieve End TB strategy. WHO recommends systematic screening, identification and treatment of LTBI especially in groups at high risk for developing active TB like people living with HIV, child contacts of pulmonary TB cases, patients other immunosuppression. After ruling out active TB by a symptom screen, individual should be tested for LTBI by either interferon-gamma release assay (IGRA) or tuberculin skin test (TST). TST with purified protein derivative (PPD RT 23) is the routine diagnostic test in most tuberculosis high burden countries. C-Tb (Statens Serum Institute, Copenhagen, Denmark) is a novel specific skin test based on ESAT-6 and CFP10 antigens. A LTBI screening model was adapted to screen the cohort of household contacts. A cost effectiveness analysis was performed from an Indian healthcare perspective, taking into account the risk of isoniazid- related toxicity and post exposure TB using C-Tb test and TST screening strategy. Taking a cohort of 100000 household contacts for analysis, for true positive cases only the incremental cost effectiveness ratio per case detected (ICER) of TST vs C-Tb test is 119128, which denotes that to prevent one active TB cases by C-Tb test we have to spend additional of ₹119128. Examining the cost alone, the C-Tb screening strategy was the most expensive at ₹166 million per 100000 contacts screened. Test cost comprised a significant proportion (34%) of the total cost of the C-Tb screening strategy. Conversely the TST was less expensive but this strategy incurred the higher diagnosis costs from the total cost, resulting from the test accuracies (₹47 million), particularly the costs incurred on true positive results. However, less contacts need to be treated to prevent an active case of TB in C-Tb test screening which has prevented 25 active TB cases more compared to TST. The number adverse events are more by TST test screening compared to C-Tb test, since the number of false positive (14030) detected by TST screening are more which results in over treatment of household contacts which are LTBI negative but tested positive.

I. INTRODUCTION

Latent tuberculosis infection (LTBI) is the persistence of an immunological response to Mycobacterium tuberculosis (M.tb) antigen stimulation without any clinically active disease. The global prevalence of LTBI is estimated to be nearly 33%. In India, there are no estimates regarding the prevalence of LTBI in the general population; however, the WHO data indicate that around 0.35 million children below the age of 5 years were eligible for LTBI treatment.¹ A significant proportion of the Indian population is susceptible to progression to active TB disease from LTBI due to the presence of the risk factors. For instance, 1.77 million homeless people live in India, and studies have found that there is a disproportionately higher risk of TB in these population.² Identification and treatment of LTBI cases remain an effective strategy in the control of tuberculosis (TB). Diagnosis of LTBI can be established on the basis of Tuberculin Skin Test (TST) and/or Interferon-Gamma Release Assays (IGRAs). TST is easy to use, but false-positive reactions may occur in individuals vaccinated with Bacille Calmette-Guerin (BCG) vaccine, particularly in infants after birth, or in individuals infected with nontuberculous mycobacteria. The TST detects *M.tb* sensitization via a delayed-type hypersensitivity response to *M.tb* antigens from purified protein derivatives while IGRAs measure interferon-gamma (IFN- γ) release in response to specific *M.tb* antigens.¹³ IGRAs are not recommended by the World Health Organisation (WHO) as a TST replacement, in low and middle income countries but are suggested to use in high-income countries.¹⁶ IGRAs do not differentiate between LTBI and active TB disease. They are whole blood tests, which measure the immune response to antigens, derived from these bacteria.²

Meta analyses have shown that IGRAs have demonstrated superior specificity and sensitivity when compared with that of TST. Major disadvantages of the IGRA is that it require high relative cost and the need for an equipped laboratory. Blood samples must be processed within 12 hours with the QFT-G, and errors in collecting, transporting, or running the assay can lead to inadequate test results. Consequently, IGRA tests can be non-diagnostic, necessitating second testing. Finally, data are limited in children, recently exposed subjects, and immunocompromised individuals.³

C-Tb (Statens Serum Institute, Copenhagen, Denmark) is a highly specific skin test for the diagnosis of LTBI designed to address some of the drawbacks of TST and IGRAs. C-Tb is applied and read in the same way as TST, but is based on the antigens ESAT-6 and CFP-10 that are also included in the IGRAs. Due to high specificity, C-Tb uses a universal 5 mm cutpoint induration irrespective of the status of BCG, HIV, or both.⁴ C-Tb combines the costeffectiveness and the ease of the TST with the specificity of the IGRAs in the diagnosis of LTBI. The C-Tb test is also unaffected by BCG vaccination. This test has fared well in Phase 3, double-blinded, and randomized trial published in 2017. It showed 94% concordance with the IGRA results with similar indurations sizes as the TST.⁵

Currently, the TST with purified protein derivative (PPD RT 23) is the routine diagnostic test in most TB high burden countries. The intermittent shortage of PPD, the low specificity of the test in BCG vaccinated population and the cumbersome training necessary for TST has highlighted the need for adoption of newer, more specific tests.³² Nevertheless, for the incorporation of new technologies to the public health system, local assessments of feasibility, acceptability, and cost-effectiveness are necessary. We aimed to analyse the cost-effectiveness of newer LTBI diagnostic tests that is C-Tb with the TST test in diagnosing and treatment of LTBI.

II. RESEARCH QUESTION

The current Health Technology Assessment proposes to answer the research question on what is the cost- effectiveness of implementing the C–Tb test to screen and treat LTBI in India.

III. OBJECTIVE

- 1. To estimate the clinical-effectiveness of different LTBI tests.
- 2. To estimate per test cost for the detection of LTBI by different tests (TST and C- Tb).
- 3. To estimate cost-effectiveness of C-Tb test as compared to TST.
- 4. To estimate the cost and clinical outcome of screening and treating with the different LTBI tests.
- 5. To estimate the budget incurred by the program if C-Tb test is implemented.

IV. METHODOLOGY

Study Perspective

This cost-effectiveness modelling was conducted primarily from the health system perspective which includes costs incurred by the health system i.e. cost of screening and treating the LTBI with C-Tb test. Also estimated the expected additional cost for implementing C-Tb test for LTBI diagnosis and treatment in India and Tamil Nadu.

Study Population

The current estimate focused on all the household contacts of the index case with active TB.

PICO

Population	Household contacts of active TB patients
Intervention	C-Tb test
Comparator	TST (Tuberculin Skin Test)
Outcome	Clinical effectiveness of the test (diagnostic accuracy), cost incurred to detect and treat LTBI case, cost effectiveness and clinical outcomes (no LTBI, LTBI, TB) of different screening strategies and cost incurred on averted false positive cases.

Population

Household contacts are defined as all people who shared meals and rooms with the index case and living together for at least the previous three months. Index case is defined as smear positive pulmonary TB patient aged >18 years who had at least one household contact, with no previous history of TB or taking anti-tubercular treatment in the previous six months.⁶ So household are considered for the study.

Intervention

Screening and testing the household contacts with the C-Tb test, it is applied and read in the same way as TST. C-Tb test is the next-generation skin test for detection of LTBI.

- It is a novel specific skin test based on 6-kDa early secretory antigenic target (ESAT-6) & 10-kDa culture filtrate protein (CFP-10) antigens of *M.tb.*⁴
- C-Tb test is a diagnostic test for screeening of LTBI due to its high specificity for detection of *M.tb* infection and overcome the issues of the interaction with BCG vaccine and infection with non-tuberculous mycobacteria seen with the TST.

Comparator

Screening the household contacts with the standard of care for diagnosing LTBI that is Tuberculin Skin Test (TST).

Outcome

This cost-effectiveness study will assess which strategy is effective in detecting the correctly classified infection and will be calculated by the number of true positive and false positive cohort cases of LTBI in household contacts, treating the positives cases with preventive therapy of six months isoniazid regimen and also to find out the budget impact analysis of C-Tb test over TST. The final outcome will be the number of TB cases prevented by the screening the population by C-Tb test and TST.

Model Structure

A deterministic decision tree model for cost-effectiveness analysis was developed in Microsoft Excel to compare the sensitivity and specificity of the various test of LTBI in household contacts of the active TB index patients. The model was parameterized using data from different sources such as published articles, systematic reviews and primary data sources.

Screening strategy

Two different screening tools were investigated in this cost-effectiveness analysis such as (1) Screening by TST; and (2) Screening by C-Tb test. Since there is no gold standard test for LTBI detection, test sensitivity, specificity and prevalence of the LTBI derived from the literature review are used to calculate diagnostic accuracy using the formula. The diagnostic accuracy of each test is in terms of true positive, true negative, false positive and false negative cases. The model has been calibrated to the characteristics of the Indian population and examined in a hypothetical cohort of 100000.

Strategies	Intervention	Implementation	Population
Proposed strategy	Testing with C-Tb test	Public health facilities	Household contacts
Comparator	Testing with TST		

Table 1. Strategies for measuring cost-effectiveness analysis

Decision tree

A decision tree has been used to represent the clinical pathway associated with screening close contacts of infectious TB index cases. We have modelled two testing strategies: testing with TST and C-Tb test. The branches of the decision tree captures the probability of testing positive, negative and the probability of testing true positives and false positives among the tested positives. Similarly the probability of true negative and false negative among the tested negatives. Further the positive cases are started with the preventive therapy and toxicity are been branched in to mild, moderate and severe. Breakdown of TB, remain LTBI and no LTBI state are the last three outcomes of completion or not completion of the preventive therapy.

Figure 1. Decision Tree

Source: Pooran A, et al. Different screening strategies (single or dual) for the diagnosis of suspected latent tuberculosis: a cost effectiveness analysis. BMC Pulm Med 2010; 10:7.

The decision tree is for the diagnosis of LTBI using the TST or C-Tb test alone in a single test strategy. It was adapted from the publication on a LTBI screening model directed at screening contacts. It was used to perform a cost-effectiveness analysis from a UK healthcare perspective. We used the same decision tree.

Study Area	India
Design	Model based study
Perspective	Health system's perspective
Target population	Household contacts of active TB patients
Intervention	C-Tb Test
Comparator-1	Tuberculin Skin Test (TST)
Outcomes	 True positive and false positive cases detected and treated by the various test Cost incurred to detect and to treat true positive and false positive cases Number of active TB cases prevented
Model	Decision Tree
Data	Primary data and Secondary data from published literature

Table 2. Summary of methodology

Model input parameter

Cost data

The economic analysis will include only the health system perspective. Using resource based costing methodology in which quantities of resources were multiplied by their respective unit costs to obtain total costs. We derived the unit costs of each screening strategy. The direct costs for screening include the cost of the test kit, consumables (vial, syringe, and needle), and human resource time. Human resource's time for testing the patient will be converted to cost utilised for the procedure and was collected from ICMR-NIRT. All the other costs were collected from current market value. The vial cost of C-Tb was taken from company's quotation. Preventive therapy cost, toxicity treatment cost, TB diagnosis cost, TB treatment cost are taken from the published literature. There was no discounting of future costs as the time period of the model is only for a year

Effectiveness parameters

The effectiveness parameters includes the adverse effects by the isoniazid preventive therapy which was categorized in to minor, major and no adverse effect and was collected from the published literature. Efficacy of the isoniazid preventive therapy was measured in terms of number of LTBI cases remaining latent and the breakdown of active TB cases after the completion or non-completion of the isoniazid preventive therapy, was also collected by the published literature.

Cost-effectiveness ratio

The primary measure of cost-effectiveness used in our analysis is the incremental cost per active cases prevented by the proposed strategy (C-Tb testing). This was calculated using incremental costs, defined as the additional costs of the proposed strategy over the cost spent over TST, divided by the difference of the number of active TB cases by the proposed strategy with the TST screening strategy.

Incremental cost per active TB case prevented =

Cost of C–Tb screening strategy – Cost of TST screening strategy Active Tb cases by C–Tb screening strategy – Active TB cases by TST screening strategy

Table 3. Input parameters on prevalence and diagnostic accuracy of three differentLTBI tests

	Parameter	Base case	Lower	Upper	Source	
	Cohort population	1,00,000	800	1,200	Assumption	
Duranalan as	LTBI in India	0.390	0.312	0.468	$M_{18} Singh et al.,$	
Prevalence	LTBI in Tamil Nadu	0.530	0.424	0.636	Krishnamoorthy Y, et al., ⁷	
	C-Tb Positive	0.292	0.234	0.351		
	C-Tb Negative	0.708	0.566	0.849		
	C-Tb True Positive	0.985	0.788	1.182	Estimated 45, 18	
	C-Tb False Positive	0.015	0.012	0.018	Estimated	
	C-Tb True Negative	0.856	0.685	1.027		
Diagnostic	C-Tb False Negative	0.144	0.115	0.173		
accuracy	TST Positive	0.437	0.349	0.524		
	TST Negative	0.563	0.451	0.676		
	TST True Positive	0.679	0.543	0.814	Estimated 18.19	
	TST False Positive	0.321	0.257	0.386	Estimated	
	TST True Negative	0.834	0.667	1.001		
	TST False Negative	0.166	0.133	0.199		
	No toxicity	0.956	0.765	1.147	Mai T Pho, et	
	Minor toxicity	0.030	0.024	0.036		
	Major toxicity	0.014	0.011	0.017	a1.,	
INIT	Start INH treatment	0.307	0.246	0.368		
treatment	No INH treatment	0.693	0.554	0.832		
outcomes	Treatment Completed	0.188	0.150	0.226	Estimated ⁸	
	Treatment not Completed	0.812	0.650	0.974		
	Developed TB	0.100	0.080	0.120	P K Moonan et	
	Remain LTBI	0.900	0.720	1.080	al., ⁹	
Mortality	All Causes Mortality of India	0.074	0.059	0.089	United Nations - World Population Prospects	
	All Causes Mortality of Tamil Nadu	0.077	0.062	0.092	NITI Aayog, Government of India	
C Th	Sensitivity of C-Tb	0.739	0.591	0.887	Soren T Hoff, et	
C-10	Specificity of C-Tb	0.993	0.794	1.192	al., ⁴⁵	

	Parameter	Base case	Lower	Upper	Source
тет	Sensitivity of TST	0.760	0.608	0.912	C. Padmaprivadars
151	Specificity of TST	0.770	0.616	0.924	hini, et al., ¹⁹
	INH treatment	1657	1326	1988	Mai T Pho, et al., ¹⁰
	Major AE	8287	6630	9944	
	Minor AE	2961	2369	3553	S. Kanoor at ¹¹
Cost data	Diagnosis Cost of TB	1594	1275	1913	5 Kapoor, et
	Treatment of active TB	7873	6298	9447	
	Willingness to pay threshold (GDP per capita) (in INR)	116000	92800	139200	

Table 4. Input parameters on costs (in ₹)

Parameter	Base case	Lower	Upper	Distribution
TST_HR	270	216.00	324.00	Gamma
TST_kit	124	99.20	148.80	Gamma
C-Tb_HR	270	216.00	324.00	Gamma
C-Tb_kit	304	243.20	364.80	Gamma

One Way Sensitivity Analysis (OWSA)

The robustness of model results was tested through a sensitivity analysis by varying input parameters between 20% above or below the estimated values. Excel was used to perform OWSA by taking the parameters like C-Tb vial cost, TST kit cost, and number of true positive cases by each test, number of individuals completing treatment, sensitivity and specificity of both the test. The sources of uncertainty especially parameter uncertainties which would influence cost-effectiveness outcome has been evaluated by OWSA. Uncertainty in outcome variables and their effect on ICER is tested by Tornado diagram.

One Way Sensitivity Analysis (OWSA) for Price Threshold for the C-Tb test

The price at which C-Tb test is procured plays a crucial role in determining the overall cost of screening, therefore, one way sensitivity analysis (OWSA) was performed. ICER per case

detection was analysed by changing the cost of the kit and evaluated at which cost the ICER is cost-effective.

Budget Impact Analysis

Budget impact analysis (BIA) is an economic assessment that will estimate the financial consequences of adopting a C-Tb test over TST for the period of the next five years. BIA is used to make informed decisions as a supplement to cost-effectiveness analyses (CEAs).

V. RESULTS

Diagnostic Accuracy

Sensitivity and Specificity of LTBI diagnostic tools

Sensitivity and specificity were collected from the literature, and it is observed that TST test sensitivity is higher than the C-Tb test, but when we compare the specificity, C-Tb test is more accurate in identifying people without the disease.

Table 5.	Diagnostic	Accuracy
----------	------------	----------

Test	Sensitivity	Specificity	Positive Predictive Value	Negative Predictive Value
C-Tb	73.90	99.30	98.54	85.61
TST	76.00	77.00	67.87	73.99

Qualitative analysis

We assessed qualitatively comparing these three test in terms of cost, accuracy, specificity, ease of administration, ease for patient, turnaround time, loss-to-follow-up, infrastructure and the level of implementation at community. The score was given based on the expert opinion. The overall score was high for IGRA flowed by C-Tb test and TST (Table-6).

Table 6. Qualitative Analysis

	C-Tb	TST	IGRA
Cost	+	+	+++
Accuracy	++	+	+++
Specificity	++	+	+++
Ease of administration	++	++	+
Ease for patient	+	+	+++
Turnaround time	++	+	+++
Loss-to-follow-up	+	+	++++

	C-Tb	TST	IGRA
Infrastructure	+++	+++	+
Level of implementation at community	+++	+++	+
Overall score	17	14	22

Table 7. Likelihood ratio of C-Tb test and TST test

Test	Likelihood ratio	Likelihood ratio	95% confidence interval	Posterior probability (odds)	95% confidence interval:	Test Accuracy
C-Tb	Likelihood ratio +	106	[96, 116]	99%	[98%,99%]	1 in 1.0 with positive test are sick
C-Tb	Likelihood ratio -	0.26	[0.26,0.27]	14%	[14%,15%]	1 in 1.2 with negative test are well
TST	Likelihood ratio +	3.3	[3.25,3.36]	68%	[68%,68%]	1 in 1.5 with positive test are sick
TST	Likelihood ratio -	0.31	[0.31,0.32]	17%	[17%,17%]	1 in 1.2 with negative test are well

Likelihood ratios compare the probability that someone with the disease has a particular test result as compared to someone without the disease. The C-Tb test positive likelihood ratio (LR+) is 106 [CI = 95%, (96%-116%)] which denotes that individuals with LTBI is 106 times more likely to have a positive C-Tb test than someone without LTBI. Negative likelihood ratio (LR-) is 0.26 denotes that someone with LTBI is 0.26 times as likely to have a negative C-Tb test as someone without LTBI. Whereas for TST the LR+ is 3.3 and LR- is 0.31 which is significantly lesser than C-Tb test.

Figure 2. Nomogram showing post-test probabilities for a positive and negative diagnostic test result. (C-Tb test)

Figure 3. Nomogram showing post-test probabilities for a positive and negative diagnostic test result. (TST)

Cost

Table 8. Unit cost per test (in ₹)

Component of Cost	C-Tb	TST
HR	270	270
Kit	304	124
Total Cost	574	394

Human resource's time for testing the patient was converted into cost. Kit cost includes the cost of syringe, needle, vial when screened by TST and C-Tb test. HR cost for C-Tb test and TST was ₹270 per test, it was similar for both tests. All the component cost of kit was collected from the current market value (IndiaMart website) and C-Tb vial cost was collected from the company market price. It was ₹304 for C-Tb and ₹124 for TST. C-Tb test cost was ₹180 higher as compare to TST.

Base Case Analysis

Cost and probability estimates were inputted into the decision tree model to determine associated costs and effectiveness measures of each screening strategy. In cost terms alone, the C-Tb screening strategy was the most expensive at ₹166 million per 100000 contacts screened, respectively. Test cost comprised a significant proportion (34%) of the total cost of the C-Tb screening strategy. Conversely the TST was less expensive but this strategy incurred the higher diagnosis costs from the total cost, resulting from the test accuracies (₹47 million), particularly the costs incurred on true positive results.

Table 9. Incremental Cost Effectiveness Ratio per case detection

Test	Total Cost	TD assas	Incre	mental	ICER	
	Total Cost	TB cases	Cost	TB cases	Cost/TB	
C-Tb	₹16,69,87,121	2882	₹0756567	- 82	110128	
TST	₹15,72,30,554	2964	()750507	- 02	119128	

Screening the cohort of 100000 household contacts by C-Tb test at ₹304 results in identification of 2882 TB case with the cost of ₹166.9 million. Whereas screening by TST test results in identification of 2964 cases with the cost of ₹157 million. It was estimated that when we use C-Tb test, less TB cases are arising as compared to TST. It may be due to less false positive

cases and more true negative cases diagnosed by C-Tb test. The incremental cost effectiveness ratio per case detected (ICER) of TST vs C-Tb is 119128, which denotes that to prevent one active TB case by C-Tb test we have to spend additional of ₹119128 which includes LTBI screening, preventive therapy, adverse effect cost, diagnosis and treatment of active TB.

One Way Sensitivity Analysis

Figure 5. OWSA of different parameters affecting the ICER

Incremental Cost Effectiveness Ratio

One Way Sensitivity Analysis was performed to know which parameter affects the ICER and it was found that C-Tb kit cost was influencing the ICER significantly by 5 times in base case value.

Cost threshold analysis (CTA)

The price at which the C-Tb vial are procured plays an important role in determining the overall cost of screening LTBI, therefore one way sensitivity cost threshold analysis was performed. ICER per case detected suggests that, if the C-Tb vial can be procured with the reduction of ₹100 (at price of ₹204) it will be the cost saving strategy (Figure 6).

Table 10. Budget Impact Analysis for India

	В	BIA with the cost of ₹ 304 for C-Tb (Number of household contacts = 11.35 million)												
Year / Test	2022	2023	2024	2025	2026	2027								
C-Tb	16,174,221,839	14,946,598,402	13,812,151,583	12,763,809,278	11,795,036,154	10,899,792,910								
TST	14,405,708,658	13,312,315,371	12,301,910,634	11,368,195,617	10,505,349,569	9,707,993,537								
Budget Impact	1 768 513 182	1 634 283 031	1 510 240 949	1 395 613 661	1 289 686 584	1 191 799 373								
	1,700,515,102	1,057,205,051	1,510,240,747	1,373,013,001	1,207,000,304	1,1/1,1//,5/5								

Table-10 shows the budget impact of C-Tb and TST tests for total predicted household contacts in India for the five years. For the year 2023, it is expected that 3 million of true positive LTBI cases will be yielded by screening 11.35 million household contacts and it will cost ₹6020 million, by C-Tb at the unit cost of ₹304. It was also estimated that to treat by the preventive therapy the cost will be ₹1537 million. If screened 11.35 million by TST it will cost ₹4132 million to detect 3.1 million of true positive LTBI cases and to treat by the preventive therapy the cost will be ₹1581 million. It is estimated that more active TB cases can be prevented by implementing C-Tb as compared to TST (9296 additional TB cases prevented). For this we need to spend ₹1634 million addition budget for India. If C-Tb kit cost reduced from ₹304 to ₹124, it is estimated that to detect and treat 3 million of true positive LTBI cases will be cost saving of ₹253 million in 2023 for India (Table-10.1).

 Table 10.1. Budget Impact Analysis for India

	BIA with the cost of ₹124 for C-Tb (Number of household contacts = 11.35 million)												
Year/ Test	2022	2023	2024	2025	2026	2027							
C-Tb	14,13,12,21,839	13,05,86,62,102	12,06,75,09,648	11,15,15,85,666	10,30,51,80,314	9,52,30,17,128							
TST	14,40,57,08,658	13,31,23,15,371	12,30,19,10,634	11,36,81,95,617	10,50,53,49,569	9,70,79,93,537							
Budget Impact (C-Tb VS TST)	-27,44,86,818	-25,36,53,269	-23,44,00,986	-21,66,09,951	-20,01,69,256	-18,49,76,409							

Table 11. Budget Impact Analysis for Tamil Nadu

		BIA with the cost of ₹ 304 for C-Tb (N= 173109)											
Year / Test	2022	2023	2024	2025	2026	2027							
С-ТЬ	299,572,616	276,835,054	255,823,274	236,406,287	218,463,050	201,881,704							
TST	274,102,272	253,297,909	234,072,598	216,306,488	199,888,825	184,717,263							
Budget Impact													
(C-Tb VS TST)	25,470,344	23,537,145	21,750,676	20,099,799	18,574,225	17,164,441							

Table-11 shows the budget impact of implementation C-Tb as compared to TST in Tamil Nadu. For the year 2023, it is estimated that ₹91 million has to be spent to detect 62,655 true positive cases by screening 173109 household contacts by C-Tb at the unit cost of ₹ 304 and ₹ 31 million for treating the LTBI. If C-Tb kit cost reduced from ₹304 to ₹124, it is estimated that to detect and treat around 62,655 of true positive LTBI cases will save ₹5,257,453 in 2023 (Table 11.1).

Table 11.1.	Budget	Impact	Analysis	for T	Famil Na	du
			•/			

Year / Test	BIA with the cost of ₹ 124 for C-Tb (N= 173109)											
	2022	2023	2024	2025	2026	2027						
C-Tb	268,413,003	248,040,456	229,214,185	211,816,829	195,739,931	180,883,271						
TST	274,102,272	253,297,909	234,072,598	216,306,488	199,888,825	184,717,263						
Budget Impact (C-Tb VS TST	-5,689,269	-5,257,453	-4,858,412	-4,489,659	-4,148,894	-3,833,993						

LTBI treatment Test No LTBI **False Positive Cases** No AE Minor AE Major AE treatment C-Tb 427 125 4 2 296 TST 14030 129 9723 4118 60 Incremental 13603 3993 125 58 9427 Cost C-Tb 489166 279591 20418 19303 169853 TST 13547190 3830779 8445388 647632 623391 Incremental -8165797 -604088 -3660926 -13058024 -627214 cost

Table 12. Expected number of no AE, minor AE, major AE and No LTBI treatment casesamong false positive cases per 100000 household contacts

The sensitivity of both tests is almost similar, but there is a significant difference in specificity. Therefore, the ability of C-Tb to avert false positive detection is high. The number of adverse events are more by TST test screening compared to C-Tb test, since the number of false positive (14030) detected by TST screening are more which results in over treatment of household contacts which are LTBI negative however tested positive. As a result, saving of INR 1,30,58,024 is incurred by screening by screening with C-Tb and the strategy will prove to be cost saving.

VI. DISCUSSION

The salient finding from our study was that TST test sensitivity is higher than the C-Tb test but when we compare the specificity, C-Tb test is more accurate in identifying people without the disease. When comparing to other screening test to diagnose LTBI using a single, universal cut-off unaffected by BCG vaccination C-Tb test is a simple and convenient skin test. C-Tb test may become a valuable tool for the detection of infection by point-of-care staff with combination of high specificity of the costly and technically complex, IFN γ release assays with the low tech procedure of tuberculin and a single cut-off. It also reports less serious adverse events in tuberculosis patients. This could be a replacement for TST to diagnose LTBI.

IGRA was recommended in high income and upper middle-income countries however, it is expensive to implement on a large scale in settings with limited resources. The C-Tb test was designed to provide high specificity in a field friendly approach. It improves on the specificity of the TST in settings where BCG coverage is high, which suggests that if C-Tb test were available worldwide, it could have a substantial effect on morbidity and health expenditure. C-Tb test also gains the advantage because of its modern and simple manufacturing process when comparing with that for PPD, because the periodic shortages of kits have been seen for the TST and other diagnosing kits, but it occurs very rarely with C-Tb test. C-Tb test provide more accurate treatment guidance in settings being unaffected by BCG vaccination status.

Due to the low sensitivity as compared to TST it was estimated that case detection in terms of true positive, C-Tb test was more costly and less effective. However TST is detecting more false positive reactions that occur in people infected with non-tuberculous mycobacteria and in people with previous BCG vaccination. False positive TST reaction can overcome to some extent by use of interpretation algorithms that adjust the cut-off value for a positive results.

Since its introduction of TST in 1908, the TST has been the standard method to test for LTBI. Subsequently IGRA test was introduced to overcome the issues of the interaction with BCG vaccine and infection non-tuberculous mycobacteria seen with TST. IGRA was the alternative test to the TST for LTBI diagnosis. IGRA was more complex and labour intensive

than the TST, and it required laboratory infrastructure and skilled manpower, but interpretation of the results are simple and more objective. It was reported that both TST and IGRA have low positive predictive value for the development of active TB. It was also reported that safety and efficacy of the C-Tb test to diagnose mycobacterium tuberculosis infection compared with established test in the contact tracing was more field friendly and it provide more accurate treatment guideline in setting where TST is commonly used. C-Tb test detects similar number of infection and high concordance with IGRA. In the high TB burden countries and where the BCG coverage also high C-Tb test could be a safe, field friendly tool to identification of LTBI which play very important role in TB control.

With respect to adverse events, it was for similar to that for TST. It was designed to provide high specificity in a field friendly format. It improves on the specificity of the TST in setting where BCG coverage was high. It would be very useful to country like India, where the burden of TB is high and the BCG coverage also was very high.

Overall positivity rate is more in TST, however 76% cases (true positive + true negative) of LTBI are diagnosed accurately. Whereas screening by C-Tb 86% cases are getting detected accurately. Based on the 39%¹² prevalence of LTBI in India, there is an urgent need to detect and treat the LTBI patients as this will lead to increase in breakdown of tuberculosis and increase in transmission if not detected on time. With current scenario of BCG vaccination in India, there are more possibilities to detect false positive cases if screening is done by TST. Alternatively screening by C-Tb test will detect correctly individuals with no infection which will result in avoiding of over treatment cost.

In terms of budget, it is suggested that if C-Tb test were available in large extend for more population coverage, it could have a substantial effect on morbidity and health expenditure. In this study aimed to estimate cost per case LTBI case detection, if we go further can be extrapolated TB prevention, morbidity and mortality due to TB and expenditure to treat TB it would be cost saving strategy for TB control.

Our study has few limitations. This modelling analysis is based on the secondary data available in the literature. Since it is a new tool developed to guide treatment for LTBI in people at risk of developing active TB, there is a paucity of information available on C-Tb test. Sensitivity and specificity was derived for this study using a targeted literature review. A systematic literature review may be performed to estimate more accurate estimates. Expected positive and negative cases were estimated by using the standard formula. This can be validated if the test are compared with the gold standard test. For budget impact analysis household contacts of Tamil Nadu and India were estimated based on the family size reported in the literature.

VI. CONCLUSION

Our hypothetical cohort model (n=100000) shows that, with a background prevalence of 0.39^{12} LTBI and considering only true positive cases in account, C-Tb test will yield 2882 tuberculosis active cases at a cost of ₹16,69,87,121, whereas screening by TST screening will yield 2964 cases at a cost of ₹1,57,23,0,554. The incremental cost effectiveness ratio per case detected (ICER) of TST vs C-Tb is 119128.

Two alternate scenarios of ICER for C-Tb were calculated, first scenario, while TST may be cost saving in terms of identifying true positive cases, still its PPV is affected by prevalent BCG reaction in the population. This could be a limitation in interpreting the cost saving ICER of TST Screening. The number of false positive cases (n = 427) yielded by C-TB is less, whereas the number of false positive cases yielded by TST is 14030. Hence in this scenario, screening by C-Tb would be cost saving, due to less detection of false positive cases as compared to TST which may lead to over detection and/or treatment for false positive cases. The second scenario, if C-Tb unit price is negotiated from ₹304 to a range between ₹204 - ₹124 then it turns cost saving in detecting LTBI in this cohort when compared to TST. Calculating the downstream costs due to over diagnosis and subsequent treatment due to TST vs C-Tb screening must be considered in further analysis.

VII. RECOMMENDATIONS

- C-Tb test could be prioritised for household LTBI contact tracing in India provided the unit price is negotiated for a 32.89% reduction (INR 204). If procured between INR 204 – INR 124, C-TB is a cost-saving strategy.
- Bulk purchasing of C-Tb test at this threshold could be a prioritised by the programme in India.

- 3. TST is not ideal test for screening LTBI in HH contacts of TB patients, as it attributes to a high number of false positive cases due to interference of prior BCG vaccination.
- 4. The number of false positive cases (n = 427) yielded by C-TB is less, whereas the number of false positive cases yielded by TST is 14030. Hence in this scenario, screening by C-Tb would be cost saving, due to less detection of false positive cases as compared to TST which may lead to over detection and/or treatment for false positive cases.

Annexure-I

Literature review

1. Literature review of IGRA and TST studies in India

S.N	Author	Year	Design	Sample	Population	Methodology	Cost	Specific	sensitivi	Result	Recommendations
								ity	ty		
1.	Padmapriyadar	2018	А	1048	household	HHCs recruited in 2	IGRA-	IGRA-	IGRA-	Of 1048 HHCs enrolled,	With the lack of a
	sini		prospectiv		contacts	cities of India, Pune	\$30	0.52	0.84	869 had both TST and	gold standard and due
	Chandrasekara		e cohort			and Chennai,				QFTGIT results	to varying sensitivity
	n et al ¹³ .,		study			underwent QFT-GIT				available and prevalence	and specificity of the
						(QIAGEN) and TST				of LTBI by QFT-GIT	currently available
						(PPD SPAN				was 54%, by TST was	tests, the value of
						2TU/5TU). A positive				55%, by either test was	using both tests in
						QFT-GIT was defined				74% and by both tests	combination needs
						as a value 0.35 IU/ml				was 35%.	further study
						and a positive TST as					particularly in TB
						an induration of 5 mm.					endemic countries
						A secondary outcome					like India, that are
						of TST induration					scaling-up TB
						10mm was explored.					preventive therapy
											under programme
											setting.
2	Kabeer et al ¹⁴ .,	2010	Case		177 adult TB	A total of 177 adult TB		QFT- 55	QFT-	QFT-IT and IP-10 were	QFT-IT and IP-10
			control		patients and	patients and 100		TST-	90.6	highly sensitive in	were highly sensitive
			study		100 healthy	healthy controls were		75.5	TST-	detecting active TB	in detecting active TB
					controls	included for this study.			68.9	cases. The combination	cases. The
						QuantiFERON-TB				with TST improved the	combination with
						Gold In-tube (QFT-IT)				sensitivity of QFT-IT	TST improved the

S.N	Author	Year	Design	Sample	Population	Methodology	Cost	Specific	sensitivi	Result	Recommendations
								ity	ty		
						method was used to				and IP-10 significantly.	sensitivity of QFT-IT
						analyze the sensitivity				Although the higher	and IP-10
						and specificity of				sensitivity of	significantly.
						IGRA				combination of QFT-	Although the higher
										IT/IP-10 and TST may	sensitivity of
										be useful in active TB	combination of QFT-
										diagnosis, they are	IT/IP-10 and TST
										limited by their poor	may be useful in
										specificity due to the	active TB diagnosis,
										high prevalence of latent	they are limited by
										TB in our settings.	their poor specificity
											due to the high
											prevalence of latent
											TB in our settings
3	M. Pai et al^{15} .,	2007	cohort	60	Tuberculosis	The study measured T-		QFT-		At baseline, 44 of 60	Our data suggest that
			study		patients	cell responses to TB		73–81%		(73%) patients were	the QFT-G assay has
						specific antigens in 60				positive by QFT-G. At	modest sensitivity in
						Indian patients with				the second timepoint, 38	patients with
						microbiologically				of 47 (81%) patients	moderate to advanced
						confirmed active				were positive. At	pulmonary disease,
						pulmonary				treatment completion, 31	but our results do not
						tuberculosis, before,				of 39 (79%) patients	show a clear
						during, and after TB				were positive. Changes	correlation between
						treatment				in IFN-γ responses over	antigen burden and T-
										time were highly	cell responses
										inconsistent - some	
										individuals showed	
										increases, while others	

S.N	Author	Year	Design	Sample	Population	Methodology	Cost	Specific	sensitivi	Result	Recommendations
								ity	ty		
										showed decreases or no	
										changes	
4	Kristen M.	2015	Decision	one	Hypothetical	A decision analytic	IGRA-	IGRA –	IGRA -	Relative to sputum	Using IGRAs for
	Little et al ¹⁶ .,		analytic	million	cohort	model to estimate the	\$30	0.52	0.84	smear microscopy, use	diagnosis of active
			model			incremental cost and				of IGRA for active TB	TB in a setting like
						effectiveness of IGRAs				resulted in 23,700 (95%	India results in
						for the diagnosis of				uncertainty range, UR:	tremendous
						active TB in India. We				3,800 – 38,300)	overtreatment of
						compared a reference				additional true-positive	people without TB,
						scenario of clinical				diagnoses, but at the	and substantial
						examination and non-				expense of 315,700	incremental cost with
						microbiological tests				(95% UR: 118,300 –	little gain in health.
						against scenarios in				388,400) additional	
						which clinical				false-positive diagnoses	
						diagnosis was				and an incremental cost	
						augmented by the				of US\$49.3 million	
						addition of either				(95% UR: \$34.9 - \$58.0	
						sputum smear				million) (2.9 billion	
						microscopy, IGRA, or				Indian Rupees).	
						Xpert MTB/RIF.					
5	S. Sudharshan	2012		50	tubercular	All cases of suspected		QFT-G-	QFT-G-	QFT-G test is very useful	
	et al ¹⁷ .,				uveitis	tubercular uveitis seen		67–98	80 to 95	in the diagnosis and	
					patients	at a tertiary care uveitis		%	%	management of	
						clinic between October				suspected ocular TB. It	
						2006 and June 2008 in				was found to be very	
						whom the QFT-G test				sensitive in identifying	
						was performed were				latent TB patients who,	
						included.				upon treatment, had a	

S.N	Author	Year	Design	Sample	Population	Methodology	Cost	Specific	sensitivi	Result	Recommendations
								ity	ty		
										significantly reduced	
										frequency of	
										recurrences. It was more	
										sensitive than the	
										Mantoux test and is not	
										significantly affected by	
										previous treatment with	
										systemic steroids or	
										immunosuppressive.	
6	Kalpana Babu	2013	Cross-	37	Healthcare	A survey was	IGRA-				
	et al ¹⁸ .,		sectional		workers	distributed among 46	₹2000				
			Survey			uveitis specialists,					
						rheumatologists, and					
						pulmonologists with a					
						minimum of 2 years of					
						experience in the					
						management of					
						tuberculosis, in order to					
						restrict the respondents					
						to specialists who have					
						used this test in their					
						practice in the					
						diagnosis of					
						tuberculosis					
7	SenbagavalliPr	2022	A	139	Female	Participants are				The prevalence of LTBI	The study was found
	akash Babu et		prospectiv		household	injected with TST,				was found to be 69%	that IGRA is more
	al ¹⁹ .,		e cohort		contacts	purified protein				(either TST or IGRA	consistent to
			study			derivative (PPD)] and				positive). Positivity rate	diagnosis of latent

S.N	Author	Year	Design	Sample	Population	Methodology	Cost	Specific	sensitivi	Result	Recommendations
								ity	ty		
						IGRA [QuantiFERON-				of IGRA was higher	tuberculosis infection
						TB Gold Plus kit				when compared to that of	than the TST. Such
						(QFT-Plus)]. All the				TST. Out of 139	studies can also be
						household contacts				participants, 68 (49%)	performed in varied
						were followed-up for				tested positive for TST,	settings among
						one year for incident				80 (57.6%) tested	different populations
						TB cases.				positive for IGRA and 52	which would help us
										(37.4%) tested positive	to improve the
										for both.	diagnosis of LTBI
											and consequently
											help in TB control.
8	Alok Kumar	2021	А	257	Inflammator	Both TST and IGRA				Out of a total of 257	TST positivity was
	Mantri et al ²⁰ .		prospectiv		y Bowel	were performed in				participants, 66 (25.7%)	slightly higher than
			e		Disease	consecutive patients				were detected to have	IGRA (23.3% vs.
			observatio		Patients and	diagnosed with IBD				LTBI. 38 (29%) of the	19%).
			nal		healthy	(131 patients) and in				IBD patients and 28	
			analysis		individuals	126 healthy				(22%) of the control	
						individuals. Both tests				subjects had LTBI. The	
						were performed on the				mean TST in IBD	
						same day. LTBI				patients was 5.9 (\pm 1.6);	
						diagnosis was				in IBD patients with	
						considered if any one				positive TST, mean TST	
						of TST or IGRA was				was -5.9 (\pm 1.8), whereas	
						found to be positive				it was 5.8 mm (\pm 1.6) in	
										control subjects (p value	
										= NS)	
9	Madhukar Pai	2005	A cross-	726	health care	Health care workers				A large proportion of the	Our study showed
	et al^{21} .,		sectional		workers	with no history of				health care workers were	high latent

S.N	Author	Year	Design	Sample	Population	Methodology	Cost	Specific	sensitivi	Result	Recommendations
								ity	ty		
			compariso			active tuberculosis				latently infected; 360	tuberculosis infection
			n study			were conducted from				(50%) were positive by	prevalence in Indian
						January to May 2004,				either TST or IFN-	health care workers,
						at a rural medical				assay, and 226 (31%)	high agreement
						school in India. A total				were positive by both	between TST and
						of 493 (68%) of the				tests. The prevalence	IFN- assay, and
						health care workers				estimates of TST and	similar association
						had direct contact with				IFN- assay positivity	between positive test
						patients with				were comparable (41%;	results and risk
						tuberculosis and 514				95% confidence interval	factors. Although
						(71%) had BCG				[CI], 38%-45% and	TST and IFN- assay
						vaccine scars.				40%; 95% CI, 37%-	appear comparable in
										43%, respectively).	this population, they
										Agreement between the	have different
										tests was high (81.4%;	performance and
										=0.61; 95% CI, 0.56-	operational
										0.67)	characteristics.
10	Mohammad	2019	Systemati					TST-	TST-		IGRAs were more
	Javad Nasiri et		c review					86%	46%		sensitive and specific
	al ²² .,							QFT-G-	QFT-G-		than the TST with
								89%	58%		regard to the
											diagnosis of LTBI in
											the transplant
											candidates. They
											have added value and
											can be
											complementary to
											TST.

S.N	Author	Year	Design	Sample	Population	Methodology	Cost	Specific	sensitivi	Result	Recommendations
								ity	ty		
11	Shekhar	2022	Cross	75	chronic	It was a diagnostic		TST-	TST-	ROC curve was plotted	Use of both TST and
	Neema et al ²³ .,		sectional		plaque	study conducted in a		77.3%	68.8%	for the absolute value of	IGRA rather than
			study		psoriasis	tertiary care centre		QFT-	QFT-	TST in mm considering	two-step testing (TST
					patients	during the study period		95-	76%-	IGRA as the gold	followed by IGRA)
						from January 20 to		100%	95%	standard. The area under	or IGRA alone for the
						December 20. Patients				the curve was 0.805. For	diagnosis of LTBI,
						more than 18 years of				the TST positivity cut-	especially in patients
						age with chronic				off of 10 and 15 mm,	with a high risk of
						plaque psoriasis				specificity was 77.3%	reactivation.
						planned for systemic				and 95.5%, respectively;	
						therapy were included.				the sensitivity was	
										68.8% irrespective of the	
										cut-off value.	

S.N	Author	Year	Design	Country	Sample	Population	Strategies	Per test cost	Result	Recommendations
1.	Sofia	2021	CEA	Portugal	499	Household	Two strategies	IGRA-€12.83	The calculated ICER was	LTBI screening with IGRA
	Sousa et					contacts	1.IGRA		€106 per LTBI diagnosis,	alone is more cost-effective
	al ²⁴ .,						2.TST+IGRA	TST+IGRA-	representing increased	
								€49.74	effectiveness with a slightly	
									increased cost of IGRA	
									screening strategy.	
2.	A.Kowd	2015	CEA	Japan	1264	Healthcare	Six strategies:	1.TST- \$15.4	QFT was the most cost-	Systematic TB screening using
	a et al 25 .,					workers	1. TST		effective strategy at the	QFT is cost-effective for
							2. QuantiFERON-TB	2.QFT-\$60.6	'willingness to pay' level of	screening HCWs.
							Gold In-Tube		US\$ 50,000/QALYs gained	
							(QFT)	3.T-SPOT- \$		
							3. T-SPOT.TB (T-	60.6		
							SPOT)			
							4. TST followed by			
							QFT			
							5. TST followed by			
							T-SPOT			
	~		~ ~ .		1 7 9 9 9	~	6. CXR			
3.	S.	2009	CEA	France	15000	Simulated	Four strategies	TST test –	TST had higher costs and	QFT is more effective and cost-
	Deuttic					adults in	1. No testing	€2.16	lower efficacy than QFT;	effective than TST+ QFT under
	Burban					close contatct	2. TST		TST+QFT was associated	a wide range of realistic test
	et al^{20} .,					with	3. QFT	QFT test-	with an ICER of €560 per	performance scenarios.
						tuberculosis	4. TST+QFT	€40.50	year of life gained (YLG)	
									compared to no testing, and	
									QFT was associated with an	
									ICER of €/30/ YLG	
4	F 1(2000	OF 4			** 1 11		mam	compared to TST+QFT.	
4.	F. Marra	2008	CEA	Canada		Household	Three screening	TST test –	The most economically	Selected use of QFT-G appears
	et al^{2} ,					contacts	strategies	\$25.41	attractive strategy was to	to be cost-effective.
							I. TST alone		administer QFT-G in BCG-	
							2. QFT-G alone	QFT test-	vaccinated contacts, and to	
								\$45.32	reserve TST for all others	

2. Literature review of cost-effectiveness studies of IGRA and TST for other countries

S.N	Author	Year	Design	Country	Sample	Population	Strategies	Per test cost	Result	Recommendations
							3. Sequential		(INMB CA\$3.70/ contact).	
							screening of TST		The least cost-effective	
							then QFT-G were		strategy was QFT-G for all	
							evaluated.		contacts, which resulted in	
									an INMB of CA\$-11.50 per	
									contact.	
5.	Seif Al	2020	CEA	Oman		Migrants	Seven strategies	1.QFT-Plus	In the base-case analysis,	IGRA testing followed by 3
	Abri et					arriving in	assessed:	with 6H –	QFT-Plus with 3HP (cost,	months of preventive treatment
	al ²⁸ .,					Oman	1. QFT-Plus with	\$1430	USD 1480; 28.28 QALYs;	with rifapentine/ isoniazid
							6Н		ICER, USD 2915 per	(3HP) was the most cost-
							2. QFT-Plus with	2. QFT-Plus	QALY gained) was more	effective intervention.
							3HP	with 3HP-\$	cost-effective than the other	
							3. QFT-Plus with	1480	TB strategies. The CXR	
							4R		strategy was the least cost-	
							4. TST with 6H	3. QFT-Plus	effective (cost, USD 3278;	
							5. ISI with 3HP	with 4R-	26.84 QALYS).	
							and directly	\$1420		
							(DOT)	4		
							(DOI)	4. 151 With		
							$\begin{array}{c} \text{0.} 1 \text{ S1 With } 4\text{K} \\ 7 \text{CVP} \end{array}$	6H-\$18/2		
							7. CAK	5 TST with		
								3.131 with $3UP$ (DOT) \$		
								1051		
								1)51		
								6 TST with		
								$4R_{-}41872$		
								7 CXR -		
								\$3277		
6.	Rafaela	2019	CEA	Brazil	10,000	Healthcare	five strategies:	1. QFT-GIT	The most cost-effective	TST constitutes the LTBI
	Borge					workers	1. tuberculin skin	test kit -	strategy was the tuberculin	screening strategy as cost
	Loureiro						testing using ≥ 5	\$33.88	skin test considering	effective in the Brazilian scene,
	et al ²⁹ .,						mm cut-off	2. TST kit-	≥ 10 mm cut-off. The	even after a significant
								PPD RT23	isolated use of the	reduction in QFT-GIT costs

S.N	Author	Year	Design	Country	Sample	Population	Strategies	Per test cost	Result	Recommendations
							 2. tuberculin skin testing≥10 mm cut-off 3. QuantiFERON-TB Gold in-Tube 4. tuberculin skin testing using ≥5 mm cut-off confirmed by QuantiFERON-TB Gold In-Tube if TST positive 5. tuberculin skin testing using ≥10 mm cut-off confirmed by QuantiFERON-TB Gold In-Tube if TST positive. 	2 UT/1.5 ml - \$4.14	QuantiFERON-TB Gold In- Tube revealed the strategy of lower efficiency with incremental cost- effectiveness ratio (ICER) of US\$ 146.05 for each HCW correctly classified by the test.	and despite the high number of patients undergoing treatment for LTBI.
7.	Marie A. de Perio et al ³⁰ .,	2009	CEA	Cincinnati		Healthcare workers	Three Strategies: 1. QFT-G 2. QFT-GIT 3. TST.	1.TST- \$ 12.48 2. QFT-G- \$ 34.78 3. QFT-GIT \$ 31.18	Both IGRAs were more effective and less costly than the TST, whether or not the HCW had been vaccinated with BCG previously. The incremental cost-effectiveness ratio of the QFT-G compared with the QFT-GIT was \$14 092/QALY for non– BCG-vaccinated HCWs and \$103 047/QALY for BCG-vaccinated HCWs	QFT-G and QFT-GIT are clinically and economically worthwhile alternatives to the TST in testing HCWs for LTBI, as both IGRA strategies are more effective and less costly than the TST strategy.

S.N	Author	Year	Design	Country	Sample	Population	Strategies	Per test cost	Result	Recommendations
8.	AB	2009	CEA	UK	280	immigrants	Strategies included the	1. QFT-	Using the NICE approach,	QFT blood testing followed by
	Hardy et						1. QFT	£25.67	the cost of screening these	CXR is feasible for TB
	al ³¹ .,						2. TST.		280 immigrants would be	screening, cheaper than
							3. CXR	2. TST-	£13 346.75 (£47.67 per	screening using the NICE
								£13.69	immigrant) and would	guideline and identifies more
									identify 83 cases of latent	cases of LTBI.
								3. CXR -	TB infection (LTBI). Using	
								£23.24	first-line QFT followed by	
									CXR the cost was £9781.82	
									(£34.94 per immigrant) and	
									identified 105 cases of	
									LTBI. The cost to identify	
									one case of LTBI following	
									NICE guidelines would be	
									$\pounds 160.81$ and using the	
									present protocol was	
									£93.16.	
-	D 1		GT 1	D 11	1000					
9.	Ricardo	2020	CEA	Brazil	1000	Close	four strategies	I. Diaskinte	The Diaskintest was cost	The Diaskintest was dominant
	E.					contacts	1. Diaskintest	st- \$1.43	saving at US \$41 with an	over all other examined
	Steren et						2. EC skin test	2. EC skin	incremental gain of 0.03	strategies. The cost saving
	al ³² .,						3. QF1-Plus	test-\$ 6	QALYS, or US \$1360 per	estimate per QALY was US
							4. ISI PPD RI 23	3. QFT-Plus-	QALY (95% UC \$978-	\$13/5. In sensitivity analyses,
								\$15.90 4 TET DDD	1948). Te EC and QFT-Plus	the Diaskintest and other newer
								4. ISI PPD	strategies were also cost	tests remained cost-saving
								KI 23-	saving at US \$1283 (95%)	compared to 151
								\$7.20	UC 904-2746) and US771$	
									(95% UC US \$539–1550)	
10	Dicordo	2012	CEA	Drozil	1.000	alasa	Three strategies	1 OFT	TST was the most cost	OFT plug is gost gaving when
10	Kicaruo Ewbon ¹	2015	CEA	DIAZII	1,000	ciose	rince strategies	I. QFI- CIT toot	affective strategy (US¢	compared to TST Having
	EwDallK					contacts	T the only ICP A		16 021/overted	additional options for the
	neiten		1	1 · · · · · · · · · · · · · · · · · · ·					r ro ozzizavened case	and the second s
	$at al^{33}$						T GIT	\$42.05	followed by TST/OFT GIT	diagnosis of latent tuberculosis

S.N	Author	Year	Design	Country	Sample	Population	Strategies	Pe	er test cost	Result	Recommendations
								2.	TST Kit (PPD RT23	alone (US\$ 22,211). ICER was US\$227,977/averted case for the QFT-GIT	eliminating the PPD RT 23 shortages.
									201/01	strategy. The TST/QFT-	
									ml)- \$	GIT strategy was	
									4.90	dominated.	
11	Abriana	2017	CEA	United		Non-US born	We modeled 5 testing	1.	IGRA-\$	IGRA was likely cost-	A single test with improved
	Tasillo			States		populations:	strategies:		84.350	effective at \$83 000/QALY;	characteristics and a lower cost
	et al 34 .,					with no	1. no testing			patients with diabetes, both	than that of IGRA could reduce
						comorbiditie	2. TST	2.	TST-\$	confirm positive (\$53	investment needed in terms of
						s, with	3. IGRA,		7.870	000/QALY) and IGRA	patient and provider time and
						diabetes,	4. Confirm positive			(\$120 000/QALY) were	cost and make universal testing
						with HIV,	(patients with a			likely cost-effective;	for non–US born patients even
							given ICPA			patients with HIV, commin	more attractive.
						LSKD	with both			preferred (\$63,000/OALY):	
							nositive resulting			and patients with ESRD no	
							in LTBI			testing was cost-effective.	
							diagnosis)			Increased LTBI prevalence	
							5. Confirm negative			and reduced return for TST	
							(patients with a			reading improved IGRA's	
							negative IGRA			relative performance. In 10	
							given TST, with			000 probabilistic	
							either positive			simulations among non-US	
							resulting in LTBI			born patients with no	
							diagnosis).			comorbidities, with	
										diabetes, and with HIV,	
										some form of testing was	
										virtually always cost-	
10	A	2010		IIIZ		-1	Strata i a	T (Effective	In hath mentions of the ICD A
12	Alli Dooron	2010	CEA	UK		ciose	Strategies	1 - X 1-i+	SPULIB	Examining costs alone, the	in both versions of the IGRA,
	et al 35					contacts		KIL	- 133.00	strategies (TST/T	affective than single screening:
	ci al,										enecuve man single screening;

S.N	Author	Year	Design	Country	Sample	Populatior	n	Strategies	Per test cost	Result	Recommendations
								the T-SPOT.TB assay	TST- £16.14	SPOT.TB and TST/QFT-	TST/ T-SPOT.TB was £2,506
								alone		GIT; £162,387 and	better than the T-SPOT.TB
								TST followed by T-	QFT-GIT-	£157,048 per 1000 contacts,	single strategy and TST/QFT-
								SPOT.TB assay when	£45.00	respectively) cost less than	GIT was £4,351 better than
								TST was positive		their single strategy	screening with QFT-GIT only.
								(TST/T-SPOT.TB)		counterparts (T-SPOT.TB	
								Quantiferon-TB-Gold-		and QFT-GIT; £203,983	
								In-Tube (QFT-GIT)		and £202,921 per 1000	
								alone		contacts) which have higher	
								TST followed by QFT-		IGRA test costs and greater	
								GIT when TST was		numbers of persons	
								positive (TST/QFT-		undergoing LTBI treatment.	
								GIT).			
13	Ank E.	2016	Prospect	Dallas,	529	Inmates i	in	(1) estimate the LTBI	TST - \$8	It costs \$23.27 more per	Further research is needed to
	Nijhawa		ive pilot	Texas,		jail		prevalence based on	QFT-GIT-\$	inmate per year to screen	determine the long-term
	n et al ³⁰ .		study	USA				TST and an IGRA test	\$37	with QFT-GIT than TST in	performance of IGRA testing in
								(QFT-GIT) results in		this population, though the	the correctional setting and the
								individuals entering a		cost per LIBI case detected	public health implications of
								large county jail in		was nearly three times	pairing QFI-GII screening
								Dallas, Texas and (2)		nigher for 1S1 than QF1-	with other tests for
								(2) measure the		GII.	communicable diseases.
								and OFT CIT regulation			
								this setting in order to			
								achieve our			
								actileve Out			
								(3) to use prospective			
								(5) to use prospective			
								compare costs between			
								the TST and OFT-GIT			
								test for LTRI			
								screening.			

S.N	Author	Year	Design	Country	Sample	Population	Strategies	Per test cost	Result	Recommendations
14	Albert	2011	Systema				Structured review and		All 13 studies observed a	The available studies on cost-
	Nienhau		tic				critical appraisal of the		decrease in costs when the	effectiveness provide strong
	s et al^{37} .		review				methods used for the		IGRAs were used. Six	evidence in support of the use
							model-based cost-		studies compared the use of	of IGRAs in screening risk
							effectiveness analysis		an IGRA as a test to confirm	groups such as HCWs,
							of TB screening		a positive TST (TST/IGRA	immigrants from high-
							programmes		strategy) to the use of an	incidence countries and close
									IGRA only strategy.	contacts. So far, only two
										studies provide evidence that
										the IGRA-only screening
										strategy is more cost-effective.
15	J.R.Cam	2015	Systema	Multi-			A literature search of		Screening of adult	Despite this, some cautionary
	pbell et		tic	centric			MEDLINE, EMBASE,		immigrants was found to be	recommendations emerged:
	al ³⁸ .		review				Cochrane Database of		cost effective with a TST in	screening HIV patients with a
							Systematic Reviews,		one study, but moderately	TST is highly cost effective,
							Web of Knowledge,		cost effective with an IGRA	while screening adult
							and PubMed was		in another study; screening	immigrants with an IGRA is
							performed from		immigrants arriving more	moderately cost effective
							database start to		than 5 years prior with an	
							November 2014. Of		IGRA was moderately cost	
							415 studies identified,		effective until 44 years of	
							ultimately eight studies		age ($n = 1$). Screening HIV-	
							were included in the		positive patients was highly	
							review.		cost effective with a TST (n	
									= 1) and moderately cost	
									effective with an IGRA (n =	
									1). Screening in those with	
									renal diseases $(n = 2)$ and	
									diabetes $(n = 1)$ was not cost	
									effective.	

3. Literature review of C-Tb skin test

S.N	Author	Year	Study	Study area	Sample	Methodology	Result	Recommendations
			design		size			
1.	Soren T.	2015	Case-	Cape	253	C-Tb and TST were randomly	C-Tb has similar sensitivity	Further studies in different settings
	Hoff et		control	Town,	patients	administered in a double-	compared with QFT-GIT for the	are required to validate the proposed 5
	al ³⁹		study	South		blinded fashion to one or the	diagnosis of M. tuberculosis	mm cut-point.
				Africa		other forearm in 253 patients	infection.	
						with active TB with or without		
						HIV co-infection. QFT-GIT		
						testing was performed prior to		
						skin testing.		
2.	Morten	2017	Randomise	Spain	979	Negative controls, close	A strong positive trend towards	C-Tb delivered IGRA-like results in a
	Ruhwald		d controlled		participa	contacts, occasional contacts,	C-Tb test positivity with	field-friendly format. Being
	et al ⁵		trial		nts	and patients with active	increasing risk of infection, from	unaffected by BCG vaccination
						pulmonary tuberculosis were	3% in negative controls to 16%	status, the C-Tb skin test might
						enrolled at 13 centres in Spain.	in occasional contacts, to 43% in	provide more accurate treatment
							close contacts. C-Tb and QFT	guidance in settings where the TST is
							results were concordant in 785	commonly used.
							(94%) of 834 participants aged 5	
							years and older, and results did	
							not diff er signifi cantly between	

S.N	Author	Year	Study	Study area	Sample	Methodology	Result	Recommendations
			design		size			
							exposure groups. The safety	
							profile of C-Tb was similar to	
							that for the TST.	
3	Henrik	2013	Randomise		147	In a dose finding phase I trial	The specificity of C-Tb was	C-Tb offers a simple and convenient
	Aggerbec		d Clinical		participa	0.01 or 0.1 mg preserved and	99.3% (95% CI 96–100%)	skin test to diagnose M. tuberculosis
	k et al ⁴⁰		Trial		nt for	unpreserved C-Tb was injected	regarding indurations \$5 mm as a	infection using a single, universal cut
					skin	by Mantoux technique in 38	positive outcome. This was	off unaffected by BCG vaccination.
					test.	patients with active	higher than the specificity of	
					38 TB	tuberculosis and induration	PPD (63% using a cut-off of 5	
					patients	responses measured. In a phase	mm or 92% using a cut-off of 15	
					for Dose	II specificity trial in 151	mm to adjust for non-specific	
					finding	uninfected, BCG vaccinated	BCG responses).	
					trial	participants 0.1 mg C-Tb was		
					included	compared to 2 TU PPD.		
4	H.	2018	Randomise	South	456	Adult patients with active TB	In patients with active TB, C-Tb	In patients with active TB, there was
	Aggerbec		d Clinical	Africa	patients	were randomised to receive	sensitivity (78%) was similar to	no interaction between C-Tb and PPD
	k et al ⁴		Trial		with	only C-Tb, only PPD, or	PPD (81%) and QFT (84%;	during the concomitant injection of
					active	concomitant injection of both	excluding 82/429 [19%]	both agents.
					TB	C-Tb and PPD using the	indeterminate results).	
						Mantoux technique.		

S.N	Author	Year	Study	Study area	Sample	Methodology	Result	Recommendations
			design		size			
						Indurations were read after 48–		
						72 hours.		

Annexure-II

4.5 3.91 4 3.5 3 2.72 \$2.5 \$\$N 2 1.95 2 1.5 1.38 1.5 0.82 1 0.5 0 USA Russia India Germany S. Africa Brazil

Figure 2. Per test cost for TST (2021)

Table 1. Expected number of true positive, false positive, false negative and true negativecases per 100000 household contacts

Test	Total Number of Case Tested	True Positive	False Positive	False Negative	True Negative
C-Tb	100000	28821	427	10179	60573
TST	100000	29640	14030	9360	46970

Table-7 shows the expected number of true positive, false positive, true negative and false negative cases after screening the cohort of 100000 household contacts with each test. It was calculated based on the formula which was derived from the sensitivity and specificity of each test and the prevalence of LTBI. The number of true positive cases are more when the cohort is

tested by TST compared to C-Tb test (29640 vs 28821). Whereas the number of true negative cases (60573) are more by C-Tb test than TST (46970) which denotes that C-Tb test is correctly detecting the negative cases than TST.

	Number of	True	False	Proportion	Proportion
Test	positive cases	Positive	Positive	(TN)	(FP)
C-Tb	29248	28821	427	0.99	0.01
TST	43670	29640	14030	0.68	0.32

Table 2. Proportion of the true positive and false positive cases from the total positive cases

Table-1 shows that when cohort is screened, true positive cases are more in TST than C-Tb test which signifies that TST is better than C-Tb test. When we consider the proportion of true positive cases from total positive cases by C-Tb test the proportion is 0.99 whereas by TST it is 0.68, which implies that the C-Tb test has ability to correctly identify household with LTBI (Table-2).

 Table 3. Proportion of the true negative and false negative cases from the total negative cases

Test	Number of cases	False Negative	True Negative	Proportion (FN)	Proportion (TN)
C-Tb	70752	10179	60573	0.14	0.86
TST	56330	9360	46970	0.17	0.83

Table-1 illustrates that when the cohort is screened, true negative cases are more by C-Tb test than TST, however in Table-3 the proportion (0.86 vs 0.83) of true negative cases from negative cases differs, which signifies that C-Tb test has the ability to correctly identify household contacts without the LTBI

Test	True Positive	False Positive	True Negative	False Negative	Total				
C-Tb	28821	427	10179	60573	100000				
TST	29640	14030	9360	46970	100000				
Total	85371	33367	31629	149633	300000				
Screening Cost									
C-Tb	16543254	245098	34768902	5842746	57400000				
TST	11678160	5527820	18506180	3687840	39400000				
Treatment Cost of LTBI									
C-Tb	14661214	217214	0	0	14878428				
TST	15077838	7137047	0	0	22214885				
	Adverse Effect Cost								
C-Tb	1812505	26853	0	0	1839358				
TST	1864010	882323	0	0	2746334				
		Diagnosis	Cost of TB						
C-Tb	45940674	0	0	16225326	62166000				
TST	47246160	0	0	14919840	62166000				
	r	Freatment Cos	st for active T B	8					
C-Tb	22689765	0	0	8013570	30703335				
TST	23334535	0	0	7368800	30703335				
		Total	Cost						
C-Tb	101647411	489166	34768902	30081642	166987121				
TST	99200703	13547190	18506180	25976480	157230554				

Table 4. Analysis of costs of each screening strategy for 100000 household contacts (at ₹304)

	BIA with the cost of ₹ 304 for C-Tb (Number of household contacts = 11.35 million)										
		Number of True Positive Cases									
Year / Test	2022	2023	2024	2025	2026	2027					
С-Ть	3,271,184	3,022,901	2,793,463	2,581,439	2,385,508	2,204,447					
TST	3,364,140	3,108,802	2,872,844	2,654,795	2,453,296	2,267,091					
Screening Cost (₹)											
С-Ть	651,49,00,000	602,04,19,090	556,34,69,281	5,141,201,963	4,750,984,734	4,390,384,992					
TST	4,471,900,000	4,132,482,790	3,818,827,346	3,528,978,351	3,261,128,894	3,013,609,211					
		Т	Treatment Cost of L	TBI (₹)							
С-Ть	1,664,047,775	1,537,746,549	1,421,031,586	1,313,175,289	1,213,505,284	1,121,400,233					
TST	1,711,334,654	1,581,444,354	1,461,412,727	1,350,491,501	1,247,989,196	1,153,266,816					
	•	•	Adverse Effect Cos	t (₹)							

Table 5. Budget Impact Analysis for India

C-Tb	205,719,287	190,105,193	175,676,209	162,342,385	150,020,598	138,634,034				
TST	211,565,167	195,507,371	180,668,361	166,955,632	154,283,700	142,573,567				
Diagnosis Cost of TB (₹)										
С-ТЬ	5,214,266,499	4,818,503,672	4,452,779,243	4,114,813,298	3,802,498,969	3,513,889,297				
TST	5,362,439,160	4,955,430,028	4,579,312,889	4,231,743,040	3,910,553,744	3,613,742,714				
Treatment Cost for active TB (₹)										
С-Ть	2,575,288,278	2,379,823,898	2,199,195,264	2,032,276,343	1,878,026,569	1,735,484,352				
TST	2,648,469,677	2,447,450,829	2,261,689,311	2,090,027,092	1,931,394,036	1,784,801,228				
			Total Cost (₹)							
С-Ть	16,174,221,839	14,946,598,402	13,812,151,583	12,763,809,278	11,795,036,154	10,899,792,910				
TST	14,405,708,658	13,312,315,371	12,301,910,634	11,368,195,617	10,505,349,569	9,707,993,537				
Budget Impact (C-Tb vs TST	1,768,513,182	1,634,283,031	1,510,240,949	1,395,613,661	1,289,686,584	1,191,799,373				

Table-5 shows the budget impact of C-Tb and TST tests for total predicted household contacts in India for the five years. For the year 2023, it is expected that 3 million of true positive LTBI cases will be yielded by screening 11.35 million household contacts and it will cost ₹6020 million,

by C-Tb at the unit cost of ₹304. It was also estimated that to treat by the preventive therapy the cost will be ₹1537 million. If screened 11.35 million by TST it will cost ₹4132 million to detect 3.1 million of true positive LTBI cases and to treat by the preventive therapy the cost will be ₹1581 million. It is estimated that more active TB cases can be prevented by implementing C-Tb as compared to TST (9296 additional TB cases prevented). For this we need to spend ₹1634 million addition budget for India. If C-Tb kit cost reduced from ₹304 to ₹124, it is estimated that to detect and treat 3 million of true positive LTBI cases will be cost saving of ₹253 million in 2023 for India (Table-5.1).

Test		BIA with the cost of	₹ ₹124 for C-Tb (Nu	mber of household o	contacts = 11.35 milli	on)			
1050	Number of True P	ositive Cases							
Year / Test	Year / Test 2022 2023 2024 2025 2026 202								
C-Tb	32,71,184	30,22,901	27,93,463	25,81,439	23,85,508	22,04,447			
TST	33,64,140	31,08,802	28,72,844	26,54,795	24,53,296	22,67,091			
Screening Cost (₹)									
C-Tb	4,47,19,00,000	4,13,24,82,790	3,81,88,27,346	3,52,89,78,351	3,26,11,28,894	3,01,36,09,211			
TST	4,47,19,00,000	4,13,24,82,790	3,81,88,27,346	3,52,89,78,351	3,26,11,28,894	3,01,36,09,211			
		r	Freatment Cost of I	LTBI (₹)					
C-Tb	1,66,40,47,775	1,53,77,46,549	1,42,10,31,586	1,31,31,75,289	1,21,35,05,284	1,12,14,00,233			
TST	1,71,13,34,654	1,58,14,44,354	1,46,14,12,727	1,35,04,91,501	1,24,79,89,196	1,15,32,66,816			
			Adverse Effect Co	ost (₹)					

 Table 5.1. Budget Impact Analysis for India

C-Tb	20,57,19,287	19,01,05,193	17,56,76,209	16,23,42,385	15,00,20,598	13,86,34,034				
TST	21,15,65,167	19,55,07,371	18,06,68,361	16,69,55,632	15,42,83,700	14,25,73,567				
Diagnosis Cost of TB (₹)										
C-Tb	5,21,42,66,499	4,81,85,03,672	4,45,27,79,243	4,11,48,13,298	3,80,24,98,969	3,51,38,89,297				
TST	5,36,24,39,160	4,95,54,30,028	4,57,93,12,889	4,23,17,43,040	3,91,05,53,744	3,61,37,42,714				
Treatment Cost for active TB (₹)										
C-Tb	2,57,52,88,278	2,37,98,23,898	2,19,91,95,264	2,03,22,76,343	1,87,80,26,569	1,73,54,84,352				
TST	2,64,84,69,677	2,44,74,50,829	2,26,16,89,311	2,09,00,27,092	1,93,13,94,036	1,78,48,01,228				
			Total Cost (₹)						
C-Tb	14,13,12,21,839	13,05,86,62,102	12,06,75,09,648	11,15,15,85,666	10,30,51,80,314	9,52,30,17,128				
TST	14,40,57,08,658	13,31,23,15,371	12,30,19,10,634	11,36,81,95,617	10,50,53,49,569	9,70,79,93,537				
Budget Impact (C-Tb VS TST	-27,44,86,818	-25,36,53,269	-23,44,00,986	-21,66,09,951	-20,01,69,256	-18,49,76,409				

Table 6. Budget Impact Analysis for Tamil Nadu

	BIA with the cost of ₹ 304 for C-Tb (N= 173109)								
	Number of True Positive Cases								
Year / Test	2022	2023	2024	2025	2026	2027			
C-Tb	67,802	62,655	57,900	53,505	49,444	45,691			
TST	69,728	64,436	59,545	55,026	50,849	46,990			
	Screening Cost (₹)								
C-Tb	99,364,543	91,822,774	84,853,426	78,413,051	72,461,500	66,961,672			
TST	68,204,930	63,028,176	58,244,337	53,823,592	49,738,382	45,963,238			
		Trea	tment Cost of LTB	[(₹)		•			
C-Tb	34,490,599	31,872,763	29,453,620	27,218,090	25,152,237	23,243,182			
TST	35,470,711	32,778,484	30,290,597	27,991,541	25,866,983	23,903,679			
		A	lverse Event Cost (₹	5)					

С-Ть	4,263,929	3,940,297	3,641,228	3,364,859	3,109,466	2,873,458			
TST	4,385,096	4,052,267	3,744,700	3,460,477	3,197,827	2,955,112			
Diagnosis Cost of TB (₹)									
С-Ть	108,075,729	99,872,781	92,292,437	85,287,441	78,814,124	72,832,132			
TST	111,146,893	102,710,844	94,915,091	87,711,035	81,053,768	74,901,787			
Treatment Cost for active TB (₹)									
C-Tb	53,377,816	49,326,440	45,582,563	42,122,846	38,925,722	35,971,260			
TST	54,894,642	50,728,138	46,877,873	43,319,842	40,031,866	36,993,447			
			Total Cost (₹)						
С-ТЬ	299,572,616	276,835,054	255,823,274	236,406,287	218,463,050	201,881,704			
TST	274,102,272	253,297,909	234,072,598	216,306,488	199,888,825	184,717,263			
Budget Impact (C-Tb VS TST)	25,470,344	23,537,145	21,750,676	20,099,799	18,574,225	17,164,441			

Table-16 shows the budget impact of implementation C-Tb as compared to TST in Tamil Nadu. For the year 2023, it is estimated that ₹91 million has to be spent to detect 62,655 true positive cases by screening 173109 household contacts by C-Tb at the unit cost of ₹ 304 and ₹ 31 million for

treating the LTBI. If C-Tb kit cost reduced from ₹304 to ₹124, it is estimated that to detect and treat around 62,655 of true positive LTBI cases will save ₹5,257,453 in 2023 (Table 6.1).

Table 6.1. Budget Impact Analysis for Tamil Nadu

		BIA with the cost of ₹ 124 for C-Tb (N= 173109)							
Year / Test	Number of True Positive Cases								
	2022	2023	2024	2025	2026	2027			
C-Tb	67,802	62,655	57,900	53,505	49,444	45,691			
TST	69,728	64,436	59,545	55,026	50,849	46,990			
Screening Cost (₹)									
С-ТЬ	68,204,930	63,028,176	58,244,337	53,823,592	72,461,500	45,963,238			
TST	68,204,930	63,028,176	58,244,337	53,823,592	49,738,382	45,963,238			
		Trea	tment Cost of LTI	BI (₹)					
C-Tb	34,490,599	31,872,763	29,453,620	27,218,090	25,152,237	23,243,182			
TST	35,470,711	32,778,484	30,290,597	27,991,541	25,866,983	23,903,679			
	·	A	dverse Effect Cost	(₹)	·	·			
С-Ть	4,263,929	3,940,297	3,641,228	3,364,859	3,109,466	2,873,458			

TST	4,385,096	4,052,267	3,744,700	3,460,477	3,197,827	2,955,112
Diagnosis Cost of TB (₹)						
С-Ть	108,075,729	99,872,781	92,292,437	85,287,441	78,814,124	72,832,132
TST	111,146,893	102,710,844	94,915,091	87,711,035	81,053,768	74,901,787
Treatment Cost for active TB (₹)						
C-Tb	53,377,816	49,326,440	45,582,563	42,122,846	38,925,722	35,971,260
TST	54,894,642	50,728,138	46,877,873	43,319,842	40,031,866	36,993,447
Total Cost (₹)						
C-Tb	268,413,003	248,040,456	229,214,185	211,816,829	195,739,931	180,883,271
TST	274,102,272	253,297,909	234,072,598	216,306,488	199,888,825	184,717,263
Budget Impact (C-Tb VS TST	-5,689,269	-5,257,453	-4,858,412	-4,489,659	-4,148,894	-3,833,993

References

- ¹ Saha S, Kumar A, Saurabh K, Shankar SH, Kashyap A, Nischal N, et al. Current status of treatment of latent tuberculosis infection in India. Indian J Med Sci 2019; 71(2):54-9.
- ² Rajpal S, Arora VK. Latent TB (LTBI) treatment: Challenges in India with an eye on 2025: "To Treat LTBI or not to treat, that is the question". Indian J Tuberc. 2020 Dec; 67(4S):S43-S47.
- ³ Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, Metcalfe JZ, Cattamanchi A, Dowdy DW, Dheda K, Banaei N. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014 ; 27(1):3-20.
- ⁴ Aggerbeck H, Ruhwald M, Hoff ST, Borregaard B, Hellstrom E, Malahleha M, Siebert M, Gani M, Seopela V, Diacon A, Lourens M, Andersen P, Dheda K. C-Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV-infected adults: A phase 3 trial. PLoS One. 2018;13(9):e0204554.
- ⁵ Ruhwald M, Aggerbeck H, Gallardo RV, Hoff ST, Villate JI, Borregaard B, Martinez JA, Kromann I, Penas A, Anibarro LL, de Souza-Galvão ML, Sánchez F, Rodrigo-Pendás JÁ, Noguera-Julian A, Martínez-Lacasa X, Tuñez MV, Fernández VL, Millet JP, Moreno A, Cobos N, Miró JM, Roldan L, Orcau A, Andersen P, Caylá JA; TESEC Working Group. Safety and efficacy of the C-Tb skin test to diagnose Mycobacterium tuberculosis infection, compared with an interferon γ release assay and the tuberculin skin test: a phase 3, double-blind, randomised, controlled trial. Lancet Respir Med. 2017;5(4):259-268.
- ⁶ Guwatudde D, Nakakeeto M, Jones-Lopez EC, Maganda A, Chiunda A, Mugerwa RD, Ellner JJ, Bukenya G, Whalen CC. Tuberculosis in household contacts of infectious cases in Kampala, Uganda. Am J Epidemiol. 2003;158(9):887-98.
- ⁷ Krishnamoorthy, Y, Ezhumalai, K, Murali, S, Rajaa, S, Jose, M, Sathishkumar, A, et al. Prevalence and risk factors associated with latent tuberculosis infection among household contacts of smear positive pulmonary tuberculosis patients in South India. Trop Med Int Health. 2021; 26: 1645–1651.
- ⁸ Central TB Division. Guidelines for Programmatic Management of Tuberculosis Preventive Treatment in India. Central TB Division, National TB Elimination Programme, Ministry of Health and Family Welfare, Government of India, New Delhi, 2021. <u>https://tbcindia.gov.in/WriteReadData/l892s/Guidelines%20for%20Programmatic%20Management%20</u> <u>of%20Tuberculosis%20Preventive%20Treatment%20in%20India.pdf</u>
- ⁹ Moonan PK, Nair SA, Agarwal R, Chadha VK, Dewan PK, Gupta UD, Ho CS, Holtz TH, Kumar AM, Kumar N, Kumar P, Maloney SA, Mase SR, Oeltmann JE, Paramasivan CN, Parmar MM, Rade KK, Ramachandran R, Rao R, Salhorta VS, Sarin R, Sarin S, Sachdeva KS, Selvaraju S, Singla R, Surie D, Tonsing J, Tripathy SP, Khaparde SD. Tuberculosis preventive treatment: the next chapter of tuberculosis elimination in India. BMJ Glob Health. 2018 Oct 8;3(5):e001135.

- ¹⁰ Pho MT, Swaminathan S, Kumarasamy N, Losina E, Ponnuraja C, Uhler LM, Scott CA, Mayer KH, Freedberg KA, Walensky RP. The cost-effectiveness of tuberculosis preventive therapy for HIV-infected individuals in southern India: a trial-based analysis. PLoS One. 2012;7(4):e36001.
- ¹¹ Kapoor S, Gupta A, Shah M. Cost-effectiveness of isoniazid preventive therapy for HIVinfected pregnant women in India. Int J Tuberc Lung Dis. 2016;20(1):85-92.
- ¹² Manvi Singh, Nishant Jaiswal, Shreya Singh, et al. Prevalence of Latent Tuberculosis in Contacts of Pulmonary Tuberculosis patients: A Systematic Review and Meta-Analysis. Authorea., 2020
- ¹³ Chandrasekaran P, Mave V, Thiruvengadam K, Gupte N, Shivakumar SVBY, Hanna LE, Kulkarni V, Kadam D, Dhanasekaran K, Paradkar M, Thomas B, Kohli R, Dolla C, Bharadwaj R, Sivaramakrishnan GN, Pradhan N, Gupte A, Murali L, Valvi C, Swaminathan S, Gupta A; CTRIUMPH Study Team. Tuberculin skin test and QuantiFERON-Gold In Tube assay for diagnosis of latent TB infection among household contacts of pulmonary TB patients in high TB burden setting. PLoS One. 2018;13(8):e0199360.
- ¹⁴ Syed Ahamed Kabeer B, Raman B, Thomas A, Perumal V, Raja A (2010) Role of QuantiFERON-TB Gold, Interferon Gamma Inducible Protein-10 and Tuberculin Skin Test in Active Tuberculosis Diagnosis. PLoS ONE 5(2): e9051.
- ¹⁵ Pai M, Joshi R, Bandyopadhyay M, Narang P, Dogra S, Taksande B, Kalantri S. Sensitivity of a whole-blood interferon-gamma assay among patients with pulmonary tuberculosis and variations in T-cell responses during anti-tuberculosis treatment. Infection. 2007; 35(2):98-103.
- ¹⁶ Little KM, Pai M, Dowdy DW (2015) Costs and Consequences of Using Interferon-γ Release Assays for the Diagnosis of Active Tuberculosis in India. PLoS ONE 10(4): e0124525.
- ¹⁷ Sudharshan S, Ganesh SK, Balu G, Mahalakshmi B, Therese LK, Madhavan HN, Biswas J. Utility of QuantiFERON®-TB Gold test in diagnosis and management of suspected tubercular uveitis in India. Int Ophthalmol. 2012; 32(3):217-23.
- ¹⁸ Babu K, Philips M, Subbakrishna DK. Perspectives of Quantiferon TB Gold test among Indian practitioners: a survey. J Ophthalmic Inflamm Infect. 2013; 3(1):9.
- ¹⁹ Prakash Babu S, Ezhumalai K, Raghupathy K, Sundaresan M, Jain K, Narasimhan PB et al. Comparison of IGRA and TST in the diagnosis of latent tuberculosis among women of reproductive age in South India. Indian Journal of Tuberculosis. 2022,
- ²⁰ Mantri AK, Meena P, Puri AS, Kumar A, Sachdeva S, Srivastava S, Arivarasan K, Varakanahali S. Comparison of Interferon-Gamma Release Assay and Tuberculin Skin Test for the Screening of Latent Tuberculosis in Inflammatory Bowel Disease Patients: Indian Scenario. Tuberc Res Treat. 2021 26;2021: 6682840.
- ²¹ Pai M, Gokhale K, Joshi R, Dogra S, Kalantri S, Mendiratta DK, Narang P, Daley CL, Granich RM, Mazurek GH, Reingold AL, Riley LW, Colford JM Jr. Mycobacterium

tuberculosis infection in health care workers in rural India: comparison of a whole-blood interferon gamma assay with tuberculin skin testing. JAMA. 2005 8; 293(22):2746-55.

- ²² Nasiri MJ, Pormohammad A, Goudarzi H, Mardani M, Zamani S, Migliori GB, Sotgiu G. Latent tuberculosis infection in transplant candidates: a systematic review and metaanalysis on TST and IGRA. Infection. 2019; 47(3):353-361.
- ²³ Neema S, Sandhu S, Mukherjee S, Vashisht D, Vendhan S, Sinha A, Vasudevan B. Comparison of Interferon Gamma Release Assay and Tuberculin Skin Test for Diagnosis of Latent Tuberculosis in Psoriasis Patients Planned for Systemic Therapy. Indian J Dermatol. 2022; 67(1):19-25.
- ²⁴ Sousa S, Rocha D, Silva JC, Ribeiro AI, Gonçalves G, Almeida Á, Correia AM, Duarte R, Carvalho C. Comparing the cost-effectiveness of two screening strategies for latent tuberculosis infection in Portugal. Pulmonology. 2021; 27(6):493-499.
- ²⁵ Kowada A, Takasaki J, Kobayashi N. Cost-effectiveness of interferon-gamma release assay for systematic tuberculosis screening of healthcare workers in low-incidence countries. J Hosp Infect. 2015; 89(2):99-108.
- ²⁶ Deuffic-Burban S, Atsou K, Viget N, Melliez H, Bouvet E, Yazdanpanah Y. Costeffectiveness of QuantiFERON-TB test vs. tuberculin skin test in the diagnosis of latent tuberculosis infection. Int J Tuberc Lung Dis. 2010;14(4):471-81.
- ²⁷ Marra F, Marra CA, Sadatsafavi M, Morán-Mendoza O, Cook V, Elwood RK, Morshed M, Brunham RC, Fitzgerald JM. Cost-effectiveness of a new interferon-based blood assay, QuantiFERON-TB Gold, in screening tuberculosis contacts. Int J Tuberc Lung Dis. 2008;12(12):1414-24.
- ²⁸ Al Abri S, Kowada A, Yaqoubi F, Al Khalili S, Ndunda N, Petersen E. Cost-effectiveness of IGRA/QFT-Plus for TB screening of migrants in Oman. Int J Infect Dis. 2020; 92S:S72-S77.
- ²⁹ Loureiro RB, Maciel ELN, Caetano R, Peres RL, Fregona G, Golub JE, et al. (2019) Costeffectiveness of QuantiFERON-TB Gold In-Tube versus tuberculin skin test for diagnosis and treatment of Latent Tuberculosis Infection in primary health care workers in Brazil. PLoS ONE 14 (11): e0225197.
- ³⁰ de Perio MA, Tsevat J, Roselle GA, Kralovic SM, Eckman MH. Cost-effectiveness of interferon gamma release assays vs tuberculin skin tests in health care workers. Arch Intern Med. 2009 26;169(2):179-87.
- ³¹ Hardy AB, Varma R, Collyns T, Moffitt SJ, Mullarkey C, Watson JP. Cost-effectiveness of the NICE guidelines for screening for latent tuberculosis infection: the QuantiFERON-TB Gold IGRA alone is more cost-effective for immigrants from high burden countries. Thorax. 2010; 65(2):178-80.
- ³² Steffen RE, Pinto M, Kritski A, Trajman A. Cost-effectiveness of newer technologies for the diagnosis of Mycobacterium tuberculosis infection in Brazilian people living with HIV. Sci Rep. 2020 11;10(1):21823.

- ³³ Steffen RE, Caetano R, Pinto M, Chaves D, Ferrari R, Bastos M, de Abreu ST, Menzies D, Trajman A. Cost-effectiveness of Quantiferon®-TB Gold-in-Tube versus tuberculin skin testing for contact screening and treatment of latent tuberculosis infection in Brazil. PLoS One. 2013; 8(4):e59546.
- ³⁴ Tasillo A, Salomon JA, Trikalinos TA, Horsburgh CR Jr, Marks SM, Linas BP. Costeffectiveness of Testing and Treatment for Latent Tuberculosis Infection in Residents Born Outside the United States With and Without Medical Comorbidities in a Simulation Model. JAMA Intern Med. 2017; 177(12):1755-1764.
- ³⁵ Pooran A, Booth H, Miller RF, Scott G, Badri M, Huggett JF, Rook G, Zumla A, Dheda K. Different screening strategies (single or dual) for the diagnosis of suspected latent tuberculosis: a cost effectiveness analysis. BMC Pulm Med. 2010 Feb 22; 10:7.
- ³⁶ Nijhawan AE, Iroh PA, Brown LS, Winetsky D, Porsa E. Cost analysis of tuberculin skin test and the QuantiFERON-TB Gold In-tube test for tuberculosis screening in a correctional setting in Dallas, Texas, USA. BMC Infect Dis. 2016; 16(1):564.
- ³⁷ Nienhaus A, Schablon A, Costa JT, Diel R. Systematic review of cost and cost-effectiveness of different TB-screening strategies. BMC Health Serv Res. 2011 ;11:247.
- ³⁸ Campbell JR, Sasitharan T, Marra F. A Systematic Review of Studies Evaluating the Cost Utility of Screening High-Risk Populations for Latent Tuberculosis Infection. Appl Health Econ Health Policy. 2015 (4):325-40.
- ³⁹ Hoff ST, Peter JG, Theron G, Pascoe M, Tingskov PN, Aggerbeck H, Kolbus D, Ruhwald M, Andersen P, Dheda K. Sensitivity of C-Tb: a novel RD-1-specific skin test for the diagnosis of tuberculosis infection. Eur Respir J. 2016 ;47(3):919-28.
- ⁴⁰ Aggerbeck H, Giemza R, Joshi P, Tingskov PN, Hoff ST, Boyle J, Andersen P, Lewis DJ. Randomised clinical trial investigating the specificity of a novel skin test (C-Tb) for diagnosis of M. tuberculosis infection. PLoS One. 2013; 8 (5):e64215.

Regional Resource Centre for HTAIn ICMR-National Institute for Research in Tuberculosis (NIRT) No. 1, Sathyamoorthy Road, Chetpet, Chennai