Health Technology Assessment in India (HTAIn)

Health Technology Assessment on the use of PET+CT for cancer care in India

Health Technology Assessment in India (HTAIn)– Regional Resource Hub - Kalam Institute of Health Technology In Collaboration with

Department of Health Research (DHR)

Kalam Institute of Health Technology Pragati Maidan, VM Steel Projects S.O Visakhaptanam-530031, Andhra Pradesh, India

Study Title:

Health Technology Assessment on the use of PET for cancer care in India

Principal	Dr. Jitendar Sharma	Executive Director-KIHT, Visakhapatnam	
Investigator			
Co-Investigator	Dr. Kavita Kachroo	Scientist – D, KIHT, Visakhapatnam	
Co-Investigator	Dr. Pudi Nagaseshu,	Scientist – C, KIHT, Visakhapatnam	
Co-Investigator	Ms. Greeshma	a Scientist – A, KIHT, Visakhapatnam	
	Gopalan		
Co-Investigator	Mr. Keerthan RM	Scientist – A, KIHT, Visakhapatnam	
Contributor	Dr. Amir Sohail	hir Sohail Health Policy Analyst, Department of Health Research, New	
	Delhi		
Contributor	Dr. Kavitha Rajsekhar	Scientist-E, Department of Health Research, New Delhi	

Acknowledgements

We would like to extend our sincere gratitude to the Secretaries of DHR, for selecting KIHT, Visakhapatnam as an HTA- Resource Hub, assigning projects and building the team's capacity to carry out the work of HTAIn, DHR.

List of Abbreviations

LMICs	low- and middle-income countries		
CC	Cervical cancer		
BC	Breast cancer		
OC	Oral cancer		
GC	Gastric cancer		
PET			
	Positron Emission Tomography		
PET/CT	Positron Emission Tomography Computerized Tomography		
CT	Computerized Tomography		
MRI	Magnetic Resonance Imaging		
SPECT	Single Photon Emission Computed Tomography		
NCRP	National Cancer Registry Programme		
AAR	Age adjusted rate		
FIGO	International Federation of Gynecology and Obstetrics		
DWI	Diffusion-weighted imaging		
TNM	Tumor node metastasis		
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses		
QUADAS-2	Quality Assessment of Diagnostic Accuracy Studies-2		
TP	True positive		
TN	True negative		
FP	False positive		
FN	False negative		
PPV	Positive predictive value		
NPV	Negative Predictive value		
DTA	Diagnostic test accuracy		
SROC	Summary receiver-operating characteristics		
	Positive likelihood		
LR ⁻	Negative likelihood		
HNC	Head and neck cancer		
QALY	Quality Adjusted Life Years		
ICER	Incremental Cost Effectiveness Ratio		
ROC	Receiver Operating Characteristic		
FDG	Fluorodeoxyglucose		
HTA	Health Technology Assessment		
HTAIn	Health Technology Assessment in India		
DHR	Department of Health Research		
CAGR	Compound Annual Growth Rate		
RevMan			
CI	Confidence Interval		
CEA	Cost Effectiveness Analysis		
WHO	World Health Organization		
LOS	Length of Stay		
GDP	Gross Domestic Product		
PSA	Probabilistic Sensitivity Analysis		
NMB	Net Monetary Benefit		
WTP	Willingness to Pay		
AERB	Atomic Energy Regulatory Board		
UMICs	Upper Middle- Income Countries		
LICs	Lower Income Countries		
HICs	High Income Countries		
	2		

RAN	Rashtriya Arogya Nidhi	
HMCPF	Health Minister's Cancer Patients Fund	
NCCP	National Cancer Control Programme	
RCC	Regional Cancer Centers	

Health Technology Assessment on the use of PET+CT for cancer care in India		
Contents		
Study Title:	1	
Health Technology Assessment on the use of PET for cancer care in India	1	
Acknowledgements	1	
List of Abbreviations	2	
List of Tables	6	
Table of Figures	7	
Executive Summary		
Chapter - I	11	
Background		
Introduction		
Cancer Statistics in India		
Available diagnostic imaging technologies and their applications in healthcare		
Cyclotrons		
Radionuclides and Radio-Nuclide Generators commonly used in Nuclear Medicine		
Nuclear Medicine infrastructure In India and other countries		
Chapter – II	18	
Clinical Effectiveness	18	
Statement of need	18	
Aim		
Objective-	18	
Inclusion criteria	18	
Exclusion criteria	18	
Types of studies	18	
Methodology	19	
Literature search database		
Screening process		
Assessment Criteria		
Data extraction		
Risk of bias in individual studies		
Prisma		
KEY WORDS:		
Study quality Assessment:		
Critical Appraisal		
Results	28	
4		

Study selection	
Study Characteristics: Description of the included studies:	
Forest Plots	
Conclusion	
Chapter – III	40
Cost effectiveness model	40
Objectives:	40
PICO Components	40
Methods	40
Results:	45
Conclusion	47
Discussion	
Factors limiting Growth of PET in India-	
Costs & Infrastructure	
Education and Training	49
Time for national strategy	
Recommendation	
Limitations	
Appendix- 1	53
Appendix-II	56
Appendix-III	60
Appendix -IV	61
Appendix-VI	63
Appendix-VI	64
Appendix VII	67
References	71

List of Tables

Table 1: Application in Healthcare	Error! Bookmark not defined.
Table 2: List of Radio- nuclides	
Table 3: List of Radio-nuclide Generators	15
Table 4: Installed base of Computerized tomography, magnetic resonance imaging,	and Positron emission tomography
in India and other countries versus cancer statistics (24)	
Table 5: Current scenario of nuclear medicine infrastructure in India - 2020(24)	
Table 6: Model Input Parameters	
Table 7: Base-case analysis results for QALYs and ICERs	45

Table of Figures

Figure 1: Mapping of Nuclear medicine infrastructure in India vis-à-vis Cancer Incidence (24-25)	17
Figure 2: PRISMA Diagram	20
Figure 3: Risk of bias graph- Cervical cancer	23
Figure 4: Risk of bias summary- Cervical cancer	23
Figure 5: Risk of bias graph- Breast cancer	24
Figure 6: Risk of bias summary- Breast cancer	24
Figure 7: Risk of bias graph- Head and Neck cancer	25
Figure 8: Risk of bias summary- Head and Neck cancer	25
Figure 9: Risk of bias graph- Gastric cancer	26
Figure 10: Risk of bias summary- Gastric cancer	26
Figure 11: Risk of bias graph- Lung cancer	27
Figure 12: Risk of bias summary- Lung cancer	27
Figure 13: Forest Plot for Cervical cancer	
Figure 14: Cervical cancer Cumulative values	30
Figure 15: ROC Curve- Cumulative values for cervical cancer	30
Figure 16: Forest Plot for Breast cancer	
Figure 17: Breast cancer Cumulative values	
Figure 18: ROC Curve- Cumulative values for breast cancer	32
Figure 19: Forest Plot for Head and neck cancer	
Figure 20: Head and Neck cancer Cumulative values	34
Figure 21: ROC Curve- Cumulative values for Head and Neck cancer	34
Figure 22: Forest Plot for Gastric Cancer	35
Figure 23: Gastric cancer Cumulative values	35
Figure 24: ROC Curve- Cumulative values for Gastric cancer	
Figure 25: Forest Plot for Lung cancer	37
Figure 26: Lung cancer Cumulative values	38
Figure 27: ROC Curve- Cumulative values for Lung cancer	38
Figure 28: Markov Model Structure	
Figure 29: ICER Scatter Plot	46
Figure 30: Cost Effectiveness Acceptability Curve	46

Executive Summary

Background:

The estimated number of people living with the disease is around 2.25 million. Every year, new cancer patients registered in India are over 11,57,294 lakhs. The risk of developing cancer before the age of 75 years in males is 9.81% and in females it is 9.42 %. One woman dies of cervical cancer every 8 minutes in India. For every 2 women newly diagnosed with breast cancer, one woman dies of it in India. Mortality due to tobacco use in India is estimated at upwards of 3500 persons every day. Tobacco (smoked and smokeless) use accounted for 3,17,928 deaths (approx.) in men and women in 2018. Mortality due to cancer in 2018 was 7,84,821(Men: 4,13,519, Women: 3,71,302). Risk of dying from cancer before the age of 75 years is 7.34% in males and 6.28% in females. Cancers of oral cavity and lungs account for over 25% of cancer deaths in males and cancer of breast and oral cavity account for 25% cancers in females. The top five cancers in men and women account for 47.2% of all cancers; these cancers can be prevented, screened for and/or detected early and treated at an early stage. This could significantly reduce the death rate from these cancers. Nuclear medicine imaging in India has come a long way from the earlier rectilinear scanning to the present-day hybrid imaging of metabolic positron emission tomography (PET) and structural computerized tomography (CT) or magnetic resonance (MR) imaging, commonly referred to as PET-CT and PET-MR. The concept of PET imaging which originated in the mid-1970s as a research tool in cardiology and neurology has in the past four decades evolved into the most sophisticated medical imaging system with its largest application in oncology. India is one of the largest markets for the fast-growing sector of medical devices which encompass a broad and heterogeneous range of technologies. The medical device industry in India is presently valued at USD 5.2 Billion and is growing at 15.8% CAGR. Due to the rising costs associated with introducing of new medical devices and procedures into the healthcare system, payers have started to pay more attention to the clinical and cost effectiveness of such technologies in advance.

Objective:

In this context, health technology assessment of "Positron Emission Tomography (PET)" in Indian healthcare system was given to Kalam Institute of Health Technology a resource hub to Department of Health Research (HTAIn) Govt. of India by Kerala Govt. As they wanted to know the evidence-based indications for PET–CT in support of facilities planning and to describe a project in which this information can be applied for an investment decision in India.

The cost of establishing and operating PET/CT scan facility is quite substantial. Notably, despite ongoing and controversial discussions about the patient-relevant benefits of PET or PET–CT/or PET-MRI, these technologies have rapidly been adopted abroad. The growth for this imaging modality has been slow owing to issues related to high cost of PET scanner, ready availability of useful biomolecules, and trained technical workforce.

Methods:

To evaluate the diagnostic accuracy of positron emission tomography and computed tomography (PET/CT) in oncology (Head and neck, breast, lung, gastric and cervical cancer) compared to positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI).

To evaluate the clinical effectiveness a systematic review was conducted by primary electronic database search. Searches were conducted in PubMed, Google scholar and Cochrane data bases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was developed for this project.

To evaluate the cost effectiveness of positron emission tomography and computed tomography (PET/CT) in oncology, cost and Quality Adjusted Life Years (QALYs) were chosen as outcomes and individuals with high risk aged between 30 and 80 are considered to be eligible for diagnosis. A deterministic and probabilistic Markov model was developed with a cohort of 1,000 patients. We chose a cycle length of one year and ran the model for 50 cycles (i.e., 50 years). Cost effectiveness of PET/CT was assessed from societal perspective with time horizon of 5 years, 10 years and lifetime. Direct medical cost, Direct Non-Medical cost and Indirect cost were calculated and depicted as mean along with its standard error and distribution type. Costs are presented in IN Rupees. The costs and Quality Adjusted Life Years (QALYs) were discounted by 3% per year.

Findings:

Diagnosis and detection of different cancers by PET, PET/CT, CT and MRI varies based on the region, recurrence and different stages of cancer. The forest plot was plotted for all five different cancers with a total of 345 studies and their sensitivity and specificity was calculated. The pooled data for the cervical cancer with a sensitivity and specificity of CT 0.62 (0.57, 0.67), 0.92 (0.57, 0.67), MRI 0.52 (0.49,0.55), 0.96 (0.95, 0.96) PET 0.90 (0.86,0.93) 0.93(0.91, 0.94) and PET/CT 0.65(0.62, 0.68) 0.97(0.97,0.98) in detecting LN metastases cervical cancer tumor staging like IA, IB II A, II B, III A and IV A in cervical cancer. The pooled data for the Breast cancer with a sensitivity and specificity of CT 0.87 (0.85, 0.89), 0.35 (0.33, 0.38) MRI 0.97 (0.94, 0.98), 0.88(0.84, 0.91) PET 0.89 (0.86, 0.90) 0.91(0.89, 0.93) and PET/CT 0.86(0.83, 0.88) 0.91(0.89, 0.93) in detecting local recurrences, lesion basis, distant metastases and breast lesions in breast cancer. The pooled data for the head and neck cancer with a sensitivity and specificity of CT 0.81(0.77,0.85), 0.72(0.70, 0.74) MRI 0.77(0.74,0.79), 0.78(0.77,0.79) PET 0.20 (0.16, 0.25) 0.94(0.92, 0.96) and PET/CT 0.84(0.82,0.86) 0.88(0.86,0.89) in detecting lymph node metastasis, detection of recurrence in patients and detecting neck levels I, II, and III with head and neck cancer. The pooled data for the gastric cancer with a sensitivity and specificity of CT 0.77(0.71,0.82), 0.95(0.93,0.97) MRI 0.84(0.73,0.93), 0.850.78,0.91() PET 0.41(0.25,0.58) 0.96(0.92,0.99) and PET/CT 0.85(0.77,0.91) 0.95 (0.90, 0.98) in detecting recurrent gastric cancer and peritoneal metastases in gastric cancer. The pooled data for the lung cancer with a sensitivity and specificity of CT 0.71 (0.66, 0.75), 0.82 (0.80,0.85) MRI 0.65(0.59,0.71), 0.91(0.89,0.94) PET 0.83 (0.79, 0.86) 0.93 (0.91 0.95) and PET/CT 0.78(0.77, 0.80) 0.90(0.89, 0.90) in detecting mediastinal lymph node Metastases, detecting stage III b, local T and N stage, M-stage lung cancer, solitary pulmonary nodule in lung cancer.

The base-case results of model analyses, which revealed that PET/CT as diagnostic modality gains 4.19, 6.42 and 6.99 QALYs, in the time horizon of 5 years, 10 years and lifetime respectively. The ICER for PET/CT compared to CT were 617; 1,783 and 2,337 respectively for different time horizons. The ICER values obtained from PSA are all somewhere close to the base-case lifetime horizon ICER value. Up to the willingness to pay of \gtrless 9,000, CT is cost-effective. When the willingness to pay is high, patients opt for better interventions that give better outcomes. Here, in our study, when the WTP is greater than 9,000, PET/CT is almost 80% cost effective. One-way sensitivity analysis reveals that the uncertainty in the utility of diseased patient, total hospitalization cost with length of stay for PET/CT and CT, total diagnostic cost for PET/CT and CT and utility of health population has the greatest impact on the ICER.

Conclusion:

Total cost of establishing PET/ CT scan facility without cyclotron was calculated to be INR 17.08 Cr (USD 2,339,048.75). Proposing more units would cost the government a huge sum of money where there is no data regarding the utilization levels of the existing units. The cost of performing PET/ CT scans can decrease if the number of examinations increase over the time. Various strategies can be adopted in order to cut down the capital and operational cost of setting up the facilities, which in turn can decrease the unit cost of PET/ CT scan. The total cost of setting up of cyclotron facility was calculated to be INR 58.63 Cr (USD 8,026,734.1). Besides, there are currently 88 units of PET/ CT in the South zone, of which 13 alone belongs to Kerala. Wherein East, North East and Central zones have less than that of Kerala each. It is concluded from the study that setting up of additional PET/ CT units in Kerala is not suggested as nuclear medicine facilities are better than national average in Kerala, rather focusing on other areas where there is dire need of development in PET/ CT infrastructure, would strengthen the nuclear medicine infrastructure in the country.

Time for a National Strategy - India does not have a national approach or national policy for the use of PET/CT as a clinical tool for cancer care and an expansion of PET CT facilities in India. Coordinated action, based on evidence-based guidelines is required as a national approach for optimal utilization of the nuclear medicine resources in India.

Chapter - I

Background

Nuclear medicine imaging in India has come a long way from the earlier rectilinear scanning to the present-day hybrid imaging of metabolic positron emission tomography (PET) and structural computerized tomography (CT) or magnetic resonance (MR) imaging, commonly referred to as PET-CT and PET-MR. The concept of PET imaging which originated in the mid-1970s as a research tool in cardiology and neurology has in the past four decades evolved into the most sophisticated medical imaging system with its largest application in oncology. (2)

India is one of the largest markets for the fast-growing sector of medical devices which encompass a broad and heterogeneous range of technologies. The medical device industry in India is presently valued at USD 5.2 Billion and is growing at 15.8% CAGR. (3) Due to the rising costs associated with introducing of new medical devices and procedures into the healthcare system, payers have started to pay more attention to the clinical and cost effectiveness of such technologies in advance.

In this context, health technology assessment of "Positron Emission Tomography (PET)" in Indian healthcare system was given to Kalam Institute of Health Technology a resource hub to Department of Health Research (HTAIn) Govt. of India. As we know the cost of establishing and operating PET scan facility is quite substantial.

Notably, despite ongoing and controversial discussions about the patient-relevant benefits of PET or PET–CT/or PET–MRI, these technologies have rapidly been adopted abroad. (5) The growth for this imaging modality has been slow owing to issues related to high cost of PET scanner, ready availability of useful biomolecules, and trained technical workforce.

Introduction

The emerging trends in positron imaging based on published data have created a noticeable paradigm shift in cancer management as a result of the early diagnosis, accurate staging, and treatment response evaluation resulting in substantial cost cutting by avoidance of unjustified surgeries and toxic-chemotherapies. The availability of wide range of newer biomolecules produced in compact self-shielded medical cyclotrons and easy to use. PET generators have enabled targeted imaging resulting in the diagnosis of cancer at the time of metabolic dysregulations in the cells that usually predate the anatomical changes, a hallmark of advanced cancer. These developments though exciting are equally challenging for the health-care providers. Creating PET-CT/PET-MRI facilities that are accessible and affordable to resource poor and remote populations requires the highest level of national commitment and a dedicated team of professionals who can oversee the project from conception to commissioning. Any negligence today may create unbridgeable health care gaps tomorrow in executing a comprehensive cancer care and cancer control program.

Cancer Statistics in India

The estimated number of people living with the disease is around 2.25 million. Every year, new cancer patients registered in India are over 11,57,294 lakhs. The risk of developing cancer before the age of 75 years in males is 9.81% and in females it is 9.42%. One woman dies of cervical cancer every 8 minutes in India (6). For every 2 women newly diagnosed with breast cancer, one woman dies of it in India (7-9). Mortality due to tobacco use in India is estimated at upwards of 3500 persons every day (10). Tobacco (smoked and smokeless) use accounted for 3,17,928 deaths (approx.) in men and women in 2018. Mortality due to cancer in 2018 was 7,84,821(Men: 4,13,519, Women: 3,71,302). Risk of dying from cancer before the age of 75 years is 7.34% in males and 6.28% in females. Cancers of oral cavity and lungs account for over 25% of cancer deaths in males and cancer of breast and oral cavity account for 25% cancers in females (11). The top five cancers in men and women account for 47.2% of all cancers; these cancers can be prevented, screened for and/or detected early and treated at an early stage (12). This could significantly reduce the death rate from these cancers. (13)

Available diagnostic imaging technologies and their applications in healthcare

As we know the use of radiation has revolutionized the field of medical imaging technology. The inner workings of the human body can now be visualized with greatly increased accuracy – making radioactivity scans among the most important tools in the diagnostician's arsenal. The six most common pieces of apparatus used in this field are Positron Emission Tomography (PET), Gamma Cameras, Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scan, Single-photon emission computed tomography (SPECT), or the fusion of these technologies- PET/CT, PET/MR, SPECT-CT.

	Table 1: Application in Healthcare				
Т	echnology	Problems Addressed	Applications		
S	PECT Bone disorders Diagnose or monitor Bone disorders, as areas of bone healing or c				
		Heart Problems	progression usually light up on SPECT scans.		
		Clogged coronary	Diagnose or monitor heart problems		
		arteries	Shows how completely the heart chambers empty during contractions.		
		Reduced pumping	Is helpful in determining which parts of the brain are being affected by		
		efficiency	• Dementia		
		Brain disorders	Clogged blood vessels		
			• Seizures		
			• Epilepsy and head injuries		
			Remarks		
	SPECT scans are not safe for women who are pregnant or breast-fe		SPECT scans are not safe for women who are pregnant or breast-feeding because the radioactive tracer may be passed to the developing foetus or		
C	CT Muscle, bone and joint Guide treatment plans and procedures, such as biopsies, surgeries, and				
	problems, like radiation therapy				
	complex bone Compare CT scans to find out if certain treatments are working				
	fractures and Tumor's To spot tumors or masses and to detect changes				
		Oncology,	To detect blood clots, excess fluids or infections.		
	12				

	Cardiology	Remarks
	Emphysema or liver masses Internal injuries and bleeding. Blood clots, excess	CT scans use X-rays, which produce ionizing radiation and research show that these sorts of radiations may damage the DNA and lead to cancer. These effects add up to the lifetime. The ionizing radiation is harmful to pregnant women and children as we
SPECT/CT	fluids or infections Thyroid and Parathyroid and Neuroendocrine tumors, Oncology Sentinel Lymphoscintigraphy Tumors, bone, lung and heart.	 SPECT/CT has the most utility in patients with ectopic parathyroid adenoma, those with distorted neck anatomy due to prior surgery, and those with prior failed parathyroid surgery as the cross-sectional multiplanar imaging will precisely specify the depth of the focus and its position with respect to the surrounding and adjacent structures Fusion of SPECT and CT images has been reported to increase the diagnostic accuracy by decreasing the number of patients with false-positive results by 46% SPECT/CT offers enhanced preoperative sentinel lymph node (SLN) localization Can provide enhanced localization and staging of neuroendocrine neoplasms, especially for lesions within the peritoneal cavity, mesentery and pancreas. Can often clarify the true nature, benign versus malignant, in case of detection of bone metastases and assessment of treatment response in neoplastic disease, especially for those with a tendency toward
MRI	Brain and spinal cord Heart and blood vessels Other internal organs Bones and Joints Breasts	 osteoblastic metastases. Examine organs, tissues and skeletal systems Used as imaging test for brain and spinal cord to help diagnose aneurysm of cerebral vessels, Disorders of the eye and inner ear Multiple sclerosis, spinal cord disorders Stroke tumors and brain injury from trauma To assess: Size and function of the heart's chambers, thickness and movement of the walls of the heart Extent of damage caused by heart attacks or heart diseas Structural problems in the aorta, such as aneurysms or dissections Inflammation or blockages in the blood vessels To check for tumors or other abnormalities of many organs in the body including liver and bile ducts, kidneys, spleen, pancreas, uterus, ovaries, prostate To evaluate: Joint abnormalities caused by traumatic or repetitive injuries, such as torn cartilage Disk abnormalities in the spine Bone infections Tumors of the bones and soft tissues Can be used with mammography to detect breast cancer Remarks MRI uses powerful magnets, the presence of metal in your body can be a safety hazard if attracted to the magnet or even the metal objects can distort the MRI images. MRI scans are not invasive, but they are noisy, take more time, and may cause claustrophobia (anxiety due to being in the enclosed space of the

		 Patients with tattoos or permanent make up have to get additional consultation with the doctor as some of these dark inks may contain metal. May be harmful to pregnant and breast- feeding women Kidney and liver diseases in patients might limit the use of injected agents during the scan.
PET	Neuroimaging Clinical oncology Musculo-skeletal Cardiology Pharmacology Neuropsychology Inflammatory disorders	 Detects cancer cells as it shows up as bright spots in PET scans as they have higher metabolic rate than normal cells. It also can reveal cancer spread, check whether a cancer treatment is working or find cancer recurrence. Although some cancers do not appear on PET scans, many types of solid tumors appear on scans including, brain, cervical, colorectal oesophageal, head and neck, lung, lymphoma, melanoma, pancreatic prostate and thyroid tumors. It can also reveal areas of decreased flow of heart Also used to evaluate brain disorders such as brain tumors, Alzheimer's disease and seizures Remarks Though a radioactive drug will be put into the body for the scan, the amount of radiation the patient is exposed is small. May be harmful to pregnant and breast-feeding women
PET/CT	Neurology Clinical oncology Musculo-skeletal Cardiology Pharmacology Neuropsychology Inflammatory disorders	 Staging, assessing treatment response, restaging and follow-up of Lymphoma Restaging and follow-up in colorectal carcinoma Staging, assessing treatment response, and follow-up of lung cancer. Restaging, follow up, and assessing treatment response of breast carcinoma. Bone and soft tissue sarcomas- staging and assessing treatment response. Restaging, assessing treatment response, and follow-up of melanoma. Restaging and assessing treatment response, and follow-up of melanoma. Restaging and assessing treatment response, and follow-up of melanoma. Restaging and assessing treatment response of head and neck tumors, including thyroid tumors. Restaging and assessing treatment response of head and neck tumors, including thyroid tumors. Epilepsy – pre-surgery Dementia, Alzheimer's Cardiac viability. Remarks PET/CT can detect abnormal metabolic activity and may provide more accurate diagnoses than these two scans performed separately.
PET/ MRI	Neurology Clinical oncology Musculo-skeletal Cardiology Pharmacology Neuropsychology Inflammatory disorders	 accurate diagnoses than these two scans performed separately. Helpful for assessment of liver metastases (hepatobiliary cancer) Used to correctly identify Neuroendocrine tumor lesions. Used for primary staging of cervical and endometrial malignancies, planning of radiotherapy in cervical cancer. Evaluation of response to therapy in ovarian cancer, and detection of recurrence in these malignancies Neuro oncologic PET/MRI uses targeted radiotracers to evaluate different aspects of tumor function and behaviour. Used for staging, detection of occult primary malignancies, assessment of chemo radio- therapeutic response, and differentiation of local recurrence from treatment effect in case of head and neck cancer. PET/MRI has lower levels of radiation Remarks- PET/MRI scans of the brain can detect abnormal findings that PET/CT misses in more than 50% of patients scanned

Cyclotrons

Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes used in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures [22]. Increase in prevalence of cancer and rise in the demand for nuclear scans for precise diagnosis are key factors driving the cyclotron market. Cost advantage over outsourced radioactive tracers and accessibility of technologically advanced diagnostic devices, such as positron emission tomography scan (PET/CT) and a single-photon emission computerized tomography (SPECT), are playing a crucial role in propelling the cyclotron market from 2020 to 2030(23)

Radionuclides and Radio-Nuclide Generators commonly used in Nuclear Medicine

List by AERB-

Table 1: List of Radio- nuclides					
	Radionuclide Half-life				
1.	1. Fluorine-18				
2.	Iodine-131	8days			
3.	Lutetium- 177	6.7 days			
4.	Phosphorus-32	14 days			
5.	Chromium -51	28 days			
6.	Iodine -125	60 days			
7.	Iron-59	46 days			
8.	8. Rhenium-186				
9.	Samarium-153	47 hours			
10.	Strontium -89	50 days			
11.	Yttrium-90	64 hours			
12.	Cobalt-57	272 days			
13.	Copper-64	13 hours			
14.	14. Gallium-67				
15.	15. Indium-111				
16.	16. Iodine - 123				
17.	Thallium-201	73 hours			
18.	Actinium-225	10 days			

Table 2: List of Radio-nuclide Generators				
Generators		Parent/Daughter	Half - Life	
1	Molybdenum-99	Parent	66 hours	
	Technicium-99m	Daughter	6 hours	
2	Tungsten-188	Parent	69.4 days	
	Rhenium-188	Daughter	17 days	
3	Germanium-68	Parent	271 days	

	Gallium -68	Daughter	68 min
4	Strontium-82	Parent	25 days
	Rubidium -82	Daughter	1.26 min

Nuclear Medicine infrastructure In India and other countries -

Table 4: Installed base of Computerized tomography, magnetic resonance imaging, andPositron emission tomography in India and other countries versus cancer statistics (24)										
Country	Australia	France	New Zealand	United States	India	Japan				
Total CT units	1782	1222	76	14750	5324	14126				
Units per million population	70.25	18.24	15.44	44.94	3.93	111.49				
Total MRI Units	375	1034	76	13275	1800	6996				
Units per million population	14.78	15.43	15.44	40.44	0.69	55.21				
Total PET Units	102	167	5	1790	279	586				
Units per million population	4.02	2.49	1.02	5.45	0.20	4.62				
Total Population in Millions	25.0	66.9	4.9	327.2	1354.1	126.4				
New cancer cases	197876	455618	35897	2129118	1157294	883395				
Units per thousand cancer cases	0.51	0.36	0.13	0.84	0.24	0.66				
5-year prevalent cases	755062	1390878	133716	7279710	2258208	2127559				
Units per/thousand 5- year cancer prevalent cases	0.13	0.12	0.037	0.24	0.12	0.27				

Table 5: Current scenario of nuclear medicine infrastructure in India – 2020(24)										
India	СТ	PET/CT	PET/MR	SPECT	SPECT-CT					
Total Units	5324	279	3	194	79					
Units per million population	3.93	0.2	0.00221	0.143	0.058					
Units per thousand cancer cases	4.6	0.24	0.0025	0.17	0.068					
Units per/thousand 5- year cancer prevalent cases	2.36	0.12	0.0013	0.086	0.035					

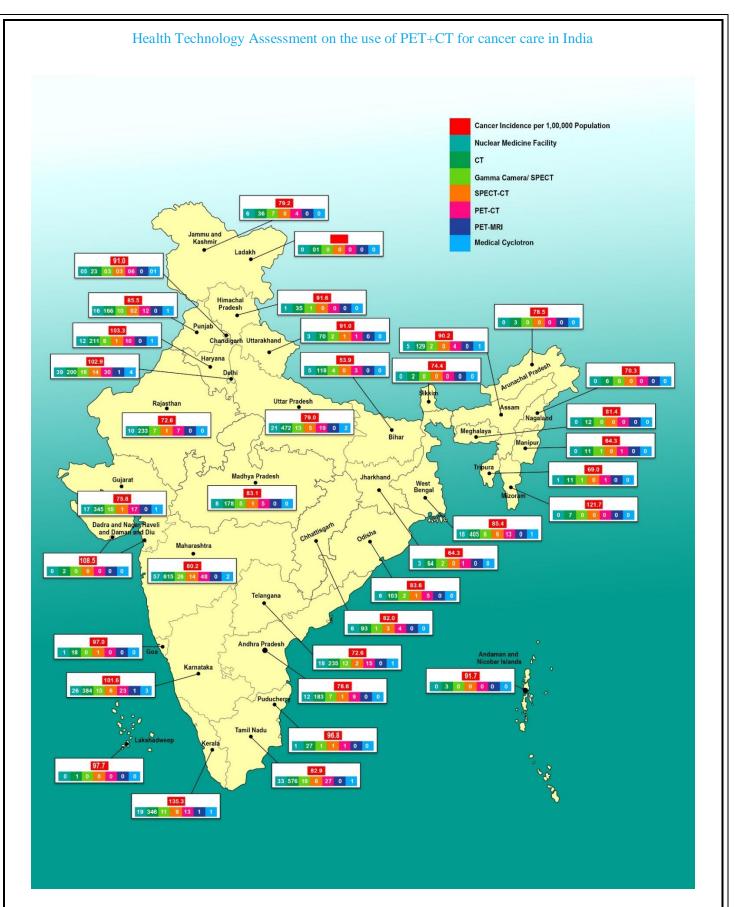


Figure 1: Mapping of Nuclear medicine infrastructure in India vis-à-vis Cancer Incidence (24-25) :

Chapter – II

Clinical Effectiveness

Statement of need

This study was undertaken as assigned by DHR upon the request put forward by the government of Kerala on setting up an additional PET/CT facility in Kerala. Owing to the rising number of cancer cases in the country, there is a critical requirement of National policy based approach for cancer diagnostics.

Aim

To identify oncological conditions for which PET /CT is likely to be shown to be diagnostically accurate.

Objective-

To evaluate the diagnostic accuracy of positron emission tomography and computed tomography (PET/CT) in oncology (Head and neck, breast, lung, gastric and cervical cancer) compared to positron emission tomography (PET) computed tomography (CT) and magnetic resonance imaging (MRI).

Inclusion criteria-

P - Population/Participants - high risk cancer patients with cervical cancer, breast cancer, Lung cancer, Head and Neck cancer and gastric cancer, 18-65 years in both male and female.

I - Intervention –Positron emission tomography and Computed Tomography (PET/CT)

C - Comparator –Positron emission tomography (PET), Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI)

O- Outcome - Sensitivity, Specificity, likelihood ratios and predictive values.

Exclusion criteria

Excluded studies from the data were pancreas, bladder, or ureter cancer, colon cancer, ovarian cancer and thyroid cancer.

Types of studies

The studies that are included in the review are retrospective and prospective studies.

Methodology

Literature search database

The systematic review was conducted by primary electronic database search. Searches were conducted in PubMed, Google scholar and Cochrane data bases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was developed for this project.

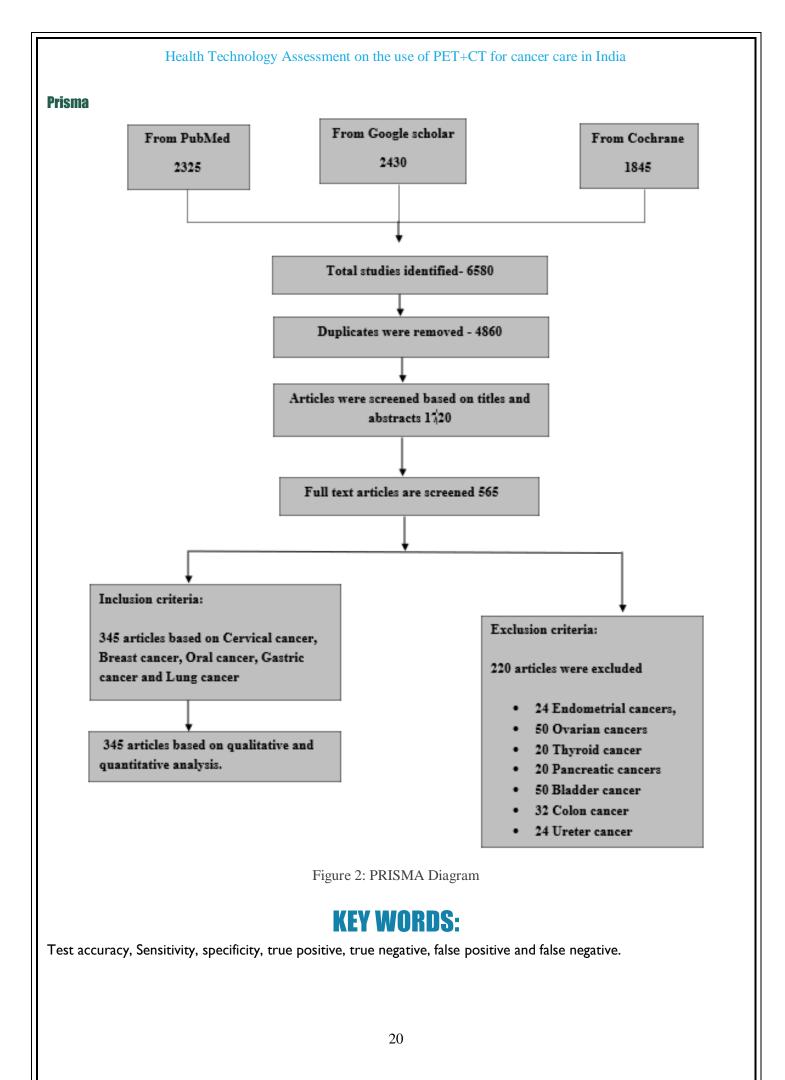
Screening process

All articles identified by the search were initially screened for eligibility on title and abstracts. The search results were exported to the reference management software EndNote X7. Duplicate articles were removed, and the remaining titles and abstracts were screened. Full-text articles were retrieved and assessed for eligibility using predefined criteria, for inclusion in the review. The target population was patients suffering with Cervical cancer, Breast cancer, Head and neck cancer, Gastric cancer and Lung cancer.

Assessment Criteria

The methods should contain information on eligibility criteria, information sources, search, study selection, risk of bias in individual studies, data items, and synthesis of the results and risk of bias across studies.

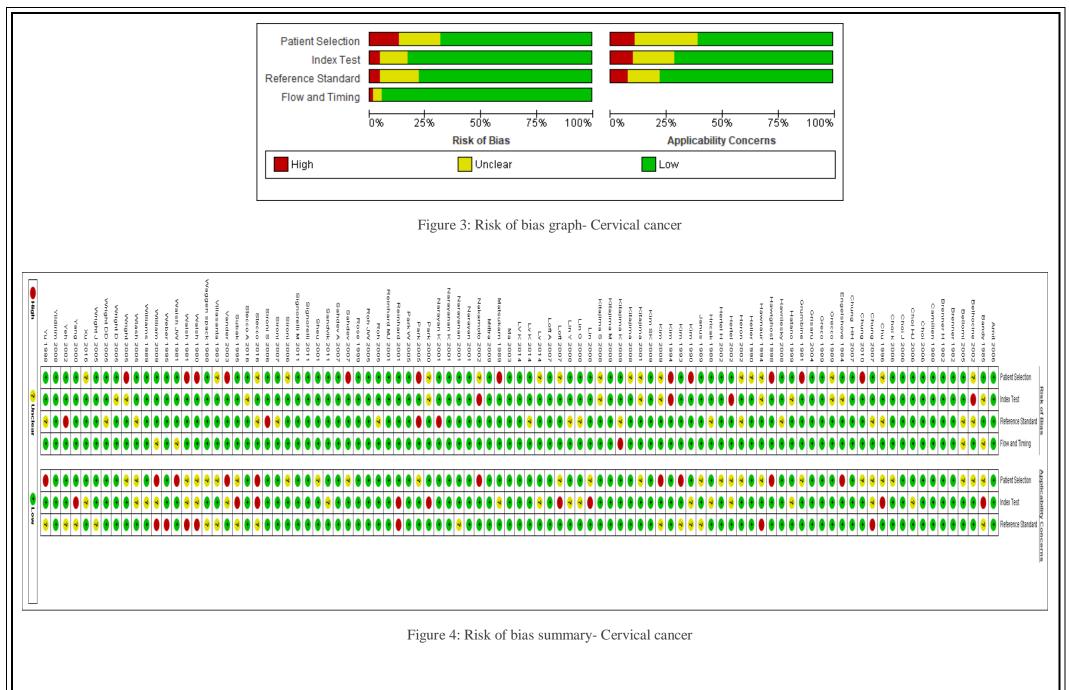
Data extraction

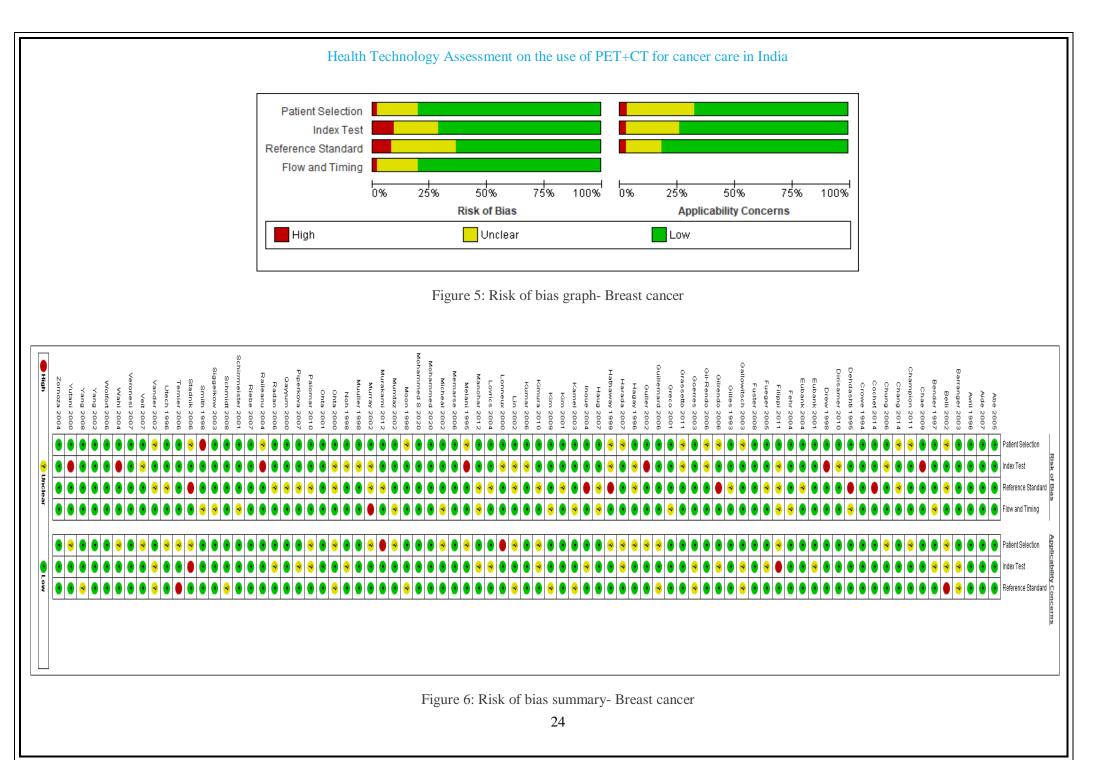

The first stage of the data extraction is calculation of sensitivity and specificity for each study, which is conducted as per the standard 2×2 table which is shown below.

Condition

Positive	Present	Absent
	TP	FP
	FN	TN

Risk of bias in individual studies


Risk of bias in the included studies refers to the addressing of specific aspects that may have introduced systematic errors (i.e., bias) into a study. The most widely accepted tool for methodological appraisal of the studies included in the review is the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool, which assesses the quality of the included studies in terms of biases affecting their applicability in four domains: patient selection, index test, reference standard and flow and timing. A summary estimate of data combined in meta-analysis is considered to be the highest level of evidence. The data will be combined clinically, methodologically, and statically having similar characteristics with same outcomes.



Study quality Assessment:

Critical Appraisal

Quality Assessment of this review. It includes studies in terms of risk of bias and concerns regarding applicability over four domains, (patient selection, index test(s), reference standard, and flow and timing), which are each rated in terms of risk of bias. A summary graphic may be helpful to convey the methodological quality of each study. Risk of bias graph and summary shows how published DTA systematic reviews have graphically summarized the methodology quality of the included studies.

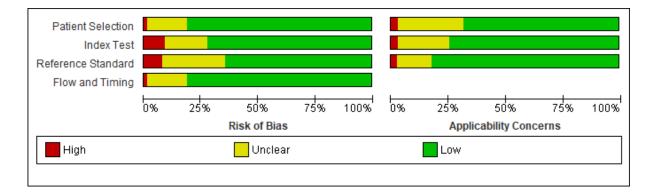
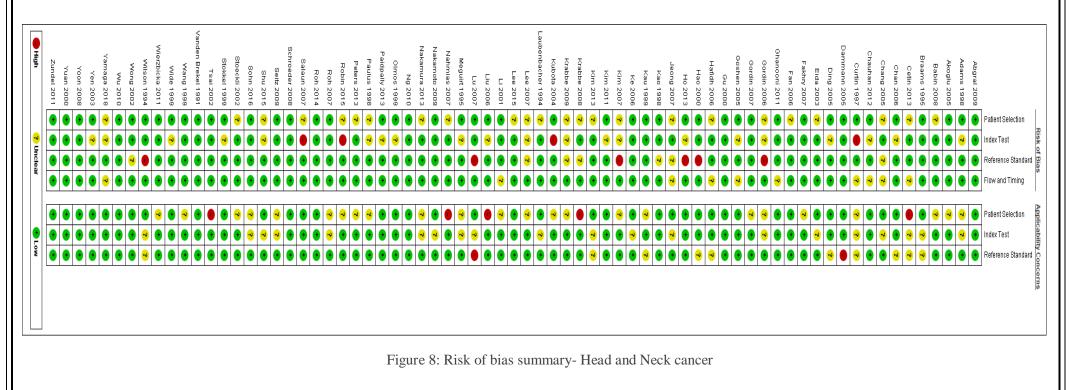



Figure 7: Risk of bias graph- Head and Neck cancer

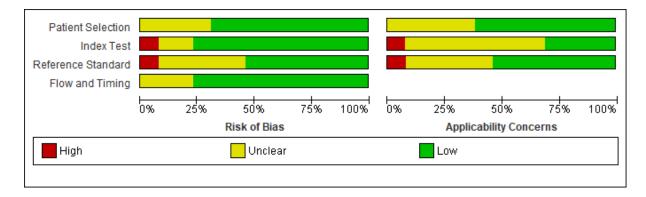


Figure 9: Risk of bias graph- Gastric cancer

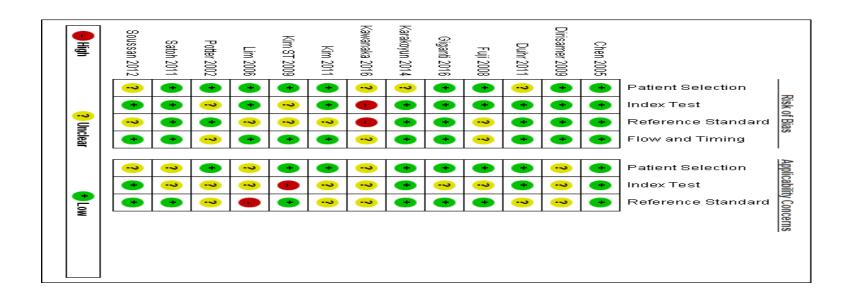


Figure 10: Risk of bias summary- Gastric cancer

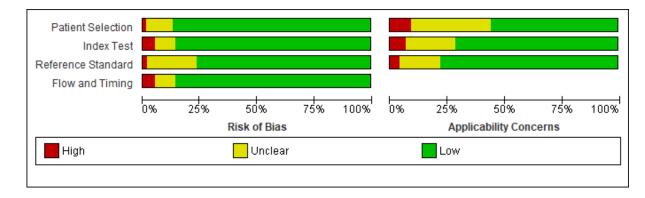


Figure 11: Risk of bias graph- Lung cancer

Figure 12: Risk of bias summary- Lung cancer

The analysis of risk was completed using Cochrane RevMan 5.0. This exercise is pivotal to knowing the quality of the data used.

Results

The results section includes information on study selection, study characteristics, risk of bias within studies, results of individual studies, synthesis of results, risk of bias across studies.

Study selection

A total of 6580 articles were identified by the search strategy of different databases like PubMed, Google scholar and Cochrane of which 4860 were removed based on duplicates, 1720 articles were removed based the title and abstract. The full texts of 565 articles were screened, of which 345 articles met the inclusion criteria and were included in this review and 345 articles were taken into consideration based on the qualitative and quantitative analysis.

Study Characteristics: Description of the included studies:

The study characteristics patients suffering with cervical, breast, head and neck, gastric cancer and lung for PET/CT, PET, MRI, and CT are included in the study. Total number of studies included in this systematic review and metaanalysis all together are 345 studies. All the included studies are retrospective and prospective study design, respectively. All the studies are clinically, methodologically, and statistically similar in their characteristics with same outcomes. The accuracy of PET/CT, PET, MRI, and CT were performed by meta-analysis through sensitivity and specificity which is represented by 2x2 table which shows the true positive, true negative, false positive and false negative values with the PPV, NPV and likelihood ratios with the overall accuracy of the device performance was given in the percentage for all five cancers such as cervical, breast, Head and neck gastric and lung cancer. The results of each individual study are presented. Meta-analysis was performed, the primary measures are pooled sensitivity and specificity, but, depending on the context, other diagnostic measures. Typically, reporting of the results includes information on the number of studies, number of patients and diagnostic measures can be calculated, such as the positive and negative predictive values, the positive and negative likelihood ratios are also reported in this study [28].

Forest Plots

The test result could be negative or above which it could be positive. With such a cutoff, results of a diagnostic test could be placed in a 2×2 table with the test result. Positive predictive values, Negative predictive values, positive likelihood ratios, and negative likelihood ratios are the approaches which are used to synthesize diagnostic test accuracy studies. The relationship between the sensitivity-specificity pair will define the appropriate approach to synthesizing outcomes. Meta-analysis could be used to assess DTAs of the same condition, in which case the performance between tests should be described together with each test's individual performance.

PET/CT- Cervical can	icer				
Study Amit 2006 Choi 2006 Choi 2006 Choi 2006 Chung 2007 Chung 2003 Chung 2010 Criveilaro 2012 Grisaru 2004 Havrilesky 2003 Kim SK 2009 Kitajima 2009 Kitajima 2009 Kitajima 2009 Kitajima 4 2009 Kitajima 2003 Loft 2007 Loft 2007 Loft 2007 Narayan 2001 Narayan 2001 Narayan 2001 Narayan 2001 Pairk 2005 Rob JW 2005 Rob JW 2005 Signorelli 2011 Signorelli 2011 Signorelli 2015 Sironi 2006 Sironi 2006 Siroci 2006 Stecco 2018 Stecco 2016	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.86 [0.42, 1.00] 0.86 [0.65, 0.97] 0.58 [0.39, 0.75] 0.77 [0.46, 0.95] 0.90 [0.74, 0.88] 0.41 [0.18, 0.67] 0.29 [0.13, 0.49] 0.27 [0.08, 0.55] 1.00 [0.68, 1.00]		Sensitivity (95% C)	Specificity (95% Cl)
Study Ti Chang 2014 1 Havrilesky 2003 1 Kitajima 2008 2 Lai 2014 6 Ryu 2003 2	FP FN TN S 7 2 1 7 2 2 2 3 10 6 5 21 11 6 6 327 18 52 3 166 3 3 4 4 13 1 2 13	0.94 [0.73, 1.00] 0.86 [0.57, 0.98] 0.80 [0.59, 0.93] 0.91 [0.82, 0.97] 0.90 [0.74, 0.98] 0.91 [0.80, 0.98] 0.92 [0.74, 0.99]	cificity (95% Cl) 0.78 (0.40, 0.97) 0.60 (0.15, 0.95) 0.78 (0.58, 0.91) 0.98 (0.96, 0.99) 0.76 (0.70, 0.82) 0.76 (0.70, 0.82) 0.57 (0.18, 0.90) 0.57 (0.18, 0.90) 0.93 (0.66, 1.00) 0.98 (0.97, 0.99)	Sensitivity (95% Cl)	Specificity (95% Cl)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sensitivity (95% C1) S 0.75 (0.43, 0.95) 0.65 (0.49, 0.78) 0.67 (0.22, 0.96) 0.67 (0.22, 0.96) 0.25 (0.05, 0.57) 0.40 (0.12, 0.74) 0.75 (0.19, 0.99) 0.00 (0.00, 0.46) 0.51 (0.38, 0.64) 0.51 (0.38, 0.64) 0.71 (0.29, 0.99) 0.16 (0.03, 0.38) 0.24 (0.15, 0.99) 0.16 (0.03, 0.38) 0.71 (0.29, 0.96) 0.71 (0.52, 0.94) Not estimable 0.60 (0.15, 0.95) 0.76 (0.52, 0.96) 0.85 (0.52, 0.96) 0.80 (0.52, 0.96)	Pecificity (95% CI) 0.91 [0.75, 0.98] 0.93 [0.75, 0.98] 1.00 [0.54, 1.00] 0.93 [0.66, 1.00] 0.97 [0.87, 1.00] 0.94 [0.73, 1.00] 0.94 [0.73, 1.00] 0.96 [0.92, 0.98] 0.95 [0.73, 0.94] 0.95 [0.82, 0.99] 0.85 [0.73, 0.94] 0.93 [0.89, 0.97] 0.97 [0.89, 1.00] 0.83 [0.59, 0.96] Not estimable 0.96 [0.68, 0.96] 0.76 [0.68, 0.96] 0.76 [0.68, 0.96] 0.70 [0.00, 0.84] 0.76 [0.097] 0.77 [0.89, 1.00] 0.70 [0.00, 0.84] 0.76 [0.097] 0.70 [0.35, 0.93] 0.77 [0.88, 1.00]	Sensitivity (95% Cl)	Specificity (95% C)
Study Bellomi 2005 Choi 2006 Choi 2006 Choi J 2006 Choi J 2007 Chung HH 2007 Chung 2010 Grecco 1989 Grecco 1989 Hawnou 1990 Hawnou 1994 Herlel 2002 Herlel 1002 Herlel 2002 Herlel 2003 Kim 1993 Kim 2009 Kim 2008 Lin 2008 Lin 2008 Lin 2008 Lin 2008 Lin 2001 Park 2005 Reinhard 2001 Park 2005 Reinhard MJ 2001 Sahdev 42007 Sheu 2001 Stecco 2016 Stecco 2016 Steco 2016 Subak 1985	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{c} 0.93 \\ 0.93 \\ 0.90 \\ 0.93 \\ 0.90 \\ 0.94 \\ 0.91 \\ 0.97 \\ $	Sensitivity (95% CI)	Specificity (95% C)

Figure 13: Forest Plot for Cervical cancer

The Diagnostic test accuracy is represented by the summary statistics and summary line from four sets of basic data, namely true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Representative summary statistics are the sensitivity, specificity. Forest plot of sensitivity and specificity of detecting cervical cancer with PET with the 95 % CI for each population of the included studies. A total of 124 studies were included in this meta-analysis. Among them, 8 studies had reported the performance of PET, 49 studies had reported the performance of PET/CT, 45 studies had reported the performance of MRI and 22 studies had reported the performance of CT, respectively. After pooling all studies, of CT, MRI, PET and PET/CT Forest plot of sensitivity and specificity of *CT* 0.62 (0.57, 0.67), 0.92 (0.57, 0.67), 0.96 (0.95, 0.96) PET 0.90 (0.86,0.93) 0.93(0.91, 0.94) and PET/CT 0.65(0.62, 0.68) 0.97(0.97,0.98) in detecting LN metastases cervical cancer Tumors staging like IA, IB II A, II B, III A and IV A in cervical cancer with 95 % CI for each population of the included studies.

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
СТ	238	96	144	1180	0.62 [0.57, 0.67]	0.92 [0.91, 0.94]	+	•
MRI	517	446	480	9704	0.52 [0.49, 0.55]	0.96 [0.95, 0.96]		•
PET	288	80	33	989	0.90 [0.86, 0.93]	0.93 [0.91, 0.94]	•	
PET-CT	670	210	358	7944	0.65 [0.62, 0.68]	0.97 [0.97, 0.98]		
							'o o.'2 o.'4 o.'6 o.'8 1' 'o	0.2 0.4 0.6 0.8 1

Figure 14: Cervical cancer Cumulative values

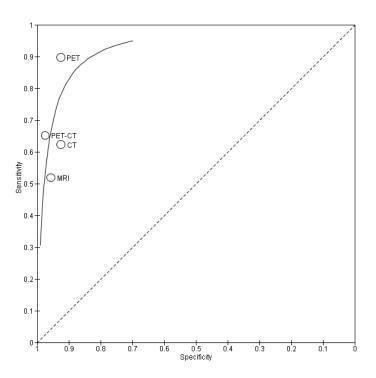


Figure 15: ROC Curve- Cumulative values for cervical cancer

The above ROC curve for cervical cancer shows PET has outperformed with higher pooled sensitivity (0.90 [95% CI: 0.86, 0.93] and specificity (0.93 [95% CI: 0.91, 0.94] when compared to PET/CT, MRI and CT.

PET/CT-Breast cance Study Chae 2009 Champion 2011 Chang 2014 Cochet 2014 Dirisamer 2010 Filippi 2011 Fueger 2005 Gallowitsch 2003 Grassetto 2011 Haug 2007 Kamel 2003 Kim 2009 Lonneux 2000 Mohammed 2020 Mohammed 2020 Mohammed 2020 Mohammed 8 2020 Monammed 8 2020 Monammed 8 2020 Monammed 8 2020 Monammed 8 2020 Monammed 8 2020 Monammed 9202 Monammed 9202 M	TP FP FN TN 16 12 17 6 35 4 5 27 39 2 3 10 33 1 5 7 39 3 10 33 1 5 7 31 4 2 21 14 0 6 32 33 5 1 23 34 5 0 3 37 0 3 49 24 1 1 8 26 1 0 30 27 0 8 102 31 3 2 2 20 0 2 8 31 1 2 3 22 7 2 26 24 1 12 32 316 0 2 8 3170 <td>$\begin{array}{c} \textbf{Sensitivity (95% Cl)}\\ 0, 48 [0, 31, 0, 66]\\ 0, 94 [0, 89, 0, 97]\\ 0, 88 [0, 73, 0, 96]\\ 0, 93 [0, 81, 0, 99]\\ 0, 93 [0, 81, 0, 99]\\ 0, 93 [0, 81, 0, 99]\\ 0, 97 [0, 72, 0, 96]\\ 0, 97 [0, 86, 1, 00]\\ 1, 00 [0, 77, 1, 00]\\ 0, 93 [0, 80, 0, 98]\\ 0, 96 [0, 80, 1, 00]\\ 1, 00 [0, 77, 1, 00]\\ 0, 93 [0, 80, 0, 98]\\ 0, 96 [0, 80, 1, 00]\\ 1, 00 [0, 87, 1, 100]\\ 0, 93 [0, 80, 0, 98]\\ 0, 96 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 91 [0, 71, 0, 99]\\ 0, 94 [0, 80, 0, 99]\\ 0, 92 [0, 73, 0, 99]\\ 0, 96 [0, 80, 1, 00]\\ 0, 86 [0, 72, 0, 97]\\ 0, 91 [0, 74, 0, 96]\\ 1, 00 [0, 82, 1, 100]\\ 0, 37 [0, 28, 0, 47]\\ 0, 81 [0, 54, 0, 96]\\ \end{array}$</td> <td>Specificity (95% CI) 0.84 [0.74, 0.91] 0.85 [0.71, 0.94] 0.87 [0.70, 0.96] 1.00 [0.69, 1.00] 0.88 [0.47, 1.00] 0.88 [0.47, 1.00] 0.88 [0.47, 1.00] 0.82 [0.63, 0.94] 1.00 [0.83, 1.00] 0.82 [0.63, 0.94] 1.00 [0.93, 1.00] 0.89 [0.52, 1.00] 1.00 [0.93, 1.00] 1.00 [0.92, 1.00] 1.00 [0.92, 1.00] 1.00 [0.63, 1.00] 0.97 [0.61, 0.91] 0.91 [0.71, 0.95] 0.96 [0.91, 0.99] 1.00 [0.53, 1.00] 0.96 [0.91, 0.99] 1.00 [0.58, 1.00]</td> <td>Sensitivity (95% CI)</td> <td>Specificity (95% CI)</td>	$\begin{array}{c} \textbf{Sensitivity (95% Cl)}\\ 0, 48 [0, 31, 0, 66]\\ 0, 94 [0, 89, 0, 97]\\ 0, 88 [0, 73, 0, 96]\\ 0, 93 [0, 81, 0, 99]\\ 0, 93 [0, 81, 0, 99]\\ 0, 93 [0, 81, 0, 99]\\ 0, 97 [0, 72, 0, 96]\\ 0, 97 [0, 86, 1, 00]\\ 1, 00 [0, 77, 1, 00]\\ 0, 93 [0, 80, 0, 98]\\ 0, 96 [0, 80, 1, 00]\\ 1, 00 [0, 77, 1, 00]\\ 0, 93 [0, 80, 0, 98]\\ 0, 96 [0, 80, 1, 00]\\ 1, 00 [0, 87, 1, 100]\\ 0, 93 [0, 80, 0, 98]\\ 0, 96 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 90 [0, 80, 1, 00]\\ 0, 91 [0, 71, 0, 99]\\ 0, 94 [0, 80, 0, 99]\\ 0, 92 [0, 73, 0, 99]\\ 0, 96 [0, 80, 1, 00]\\ 0, 86 [0, 72, 0, 97]\\ 0, 91 [0, 74, 0, 96]\\ 1, 00 [0, 82, 1, 100]\\ 0, 37 [0, 28, 0, 47]\\ 0, 81 [0, 54, 0, 96]\\ \end{array}$	Specificity (95% CI) 0.84 [0.74, 0.91] 0.85 [0.71, 0.94] 0.87 [0.70, 0.96] 1.00 [0.69, 1.00] 0.88 [0.47, 1.00] 0.88 [0.47, 1.00] 0.88 [0.47, 1.00] 0.82 [0.63, 0.94] 1.00 [0.83, 1.00] 0.82 [0.63, 0.94] 1.00 [0.93, 1.00] 0.89 [0.52, 1.00] 1.00 [0.93, 1.00] 1.00 [0.92, 1.00] 1.00 [0.92, 1.00] 1.00 [0.63, 1.00] 0.97 [0.61, 0.91] 0.91 [0.71, 0.95] 0.96 [0.91, 0.99] 1.00 [0.53, 1.00] 0.96 [0.91, 0.99] 1.00 [0.58, 1.00]	Sensitivity (95% CI)	Specificity (95% CI)
Study Abe 2005 Aide 2007 Avril 1996 Barranger 2003 Bender 1997 Dehdashti 1995 Dirisamer 2010 Eubank 2004 Gallowitsch 2003 Gilrendo 2006 Goerres 2003 Greco 2001 Guillemard 2006 Guiller 2002 Hathaway 1999 Haug 2007 Inoue 2004 Kamel 2003 Kim 2001 Lin 2002 Moon 1988 Noh 1988 Noh 1988 Ohta 2001 Piperkova 2007 Raileanu 2004 Schmidt 2008 Siggelkow 2003 Simth 1998 Utech 1998 Utech 1996 Vang 2002	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	istivity (95% Cl) S 1.00 [0.77, 1.00] 0.75 [0.55, 0.83] 0.79 [0.58, 0.93] 0.20 [0.04, 0.48] 0.93 [0.66, 1.00] 0.88 [0.67, 0.93] 0.81 [0.66, 0.91] 0.94 [0.71, 1.00] 0.82 [0.67, 0.93] 0.20 [0.03, 0.56] 0.97 [0.85, 1.00] 0.86 [0.77, 0.90] 1.00 [0.77, 1.00] 0.86 [0.47, 1.00] 0.84 [0.47, 1.00] 0.86 [0.47, 1.00] 0.88 [0.47, 1.00] 0.48 [0.70, 0.98] 0.68 [0.47, 1.00] 0.43 [0.18, 0.71] 1.00 [0.74, 1.00] 0.44 [0.71, 1.00] 0.83 [0.70, 0.98] 0.66 [0.42, 0.76] 0.83 [0.70, 1.00] 0.84 [0.77, 1.00] 0.86 [0.42, 0.76] 0.93] 0.66 [0.42, 0.76] 0.93] 0.67 [0.40, 0.97] 0.98 [0.72, 0.98] 0.83 [0.77, 0.93] 0.83 [0.77, 0.93] 0.84 [0.77, 1.00] 0.98 [0.95] 0.85 [0.42, 0.76] 0.93] 0.86 [0.42, 0.76] 0.98] 0.87 [0.68, 0.95] 0.98] 0.88 [0.77, 0.98] 0.98] 0.88 [0.73, 0.97] 0.98 [0.73, 0.97]	pecificity (95% Cl) 0.97 [0.83, 1.00] 0.71 [0.29, 0.96] 1.00 [0.80, 1.00] 0.07 [0.88, 1.00] 0.97 [0.88, 1.00] 1.00 [0.80, 1.00] 0.97 [0.88, 1.00] 1.00 [0.69, 1.00] 0.97 [0.88, 1.00] 0.97 [0.88, 1.00] 0.91 [0.78, 0.97] 0.93 [0.66, 1.00] 0.92 [0.63, 0.94] 0.94 [0.71, 1.00] 0.72 [0.47, 0.90] 0.86 [0.78, 0.93] 1.00 [0.54, 1.00] 0.94 [0.71, 1.00] 0.96 [0.65, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.74, 0.93] 0.92 [0.75, 1.00] 0.94 [0.75, 1.00] 0.94 [0.75, 1.00] 0.92 [0.75, 0.98] 0.92 [0.79, 0.98] 0.92 [0.79, 0.98]	Sensitivity (95% CI)	Specificity (95% CI)
CT-Breast cancer Study Avril 1996 Chung 2006 Crowe 1994 Eubank 2001 Fuster 2008 Gallowitsch 2003 Gilrendo 2006 Guller 2002 Hagay 1996 Haug 2007 Kumar 2006 Lovrics 2004 Mohammed 2020 Mohammed 2020 Mohammed S 2020 Ohta 2001 Piperkova 2007 Radan 2006 Schirrmeister 2001 Ternier 2008 Vander 2002 Veronesi 2007 Wahl 2004 Wolfort 2006 Yvang 2008 Yutani 1999 Zornoza 2004	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \textbf{Sensitivity (95% Cl)} \\ 1.00 [0.78, 1.00] \\ 1.00 [0.86, 1.00] \\ 1.00 [0.66, 1.00] \\ 0.40 [0.18, 0.64] \\ 1.00 [0.77, 1.00] \\ 0.85 [0.78, 0.95] \\ 0.98 [0.94, 1.00] \\ 0.86 [0.42, 1.00] \\ 0.91 [0.79, 0.98] \\ 0.92 [0.74, 0.99] \\ 0.82 [0.74, 0.99] \\ 0.82 [0.74, 0.99] \\ 0.82 [0.74, 0.99] \\ 0.92 [0.74, 0.99] \\ 0.92 [0.74, 0.99] \\ 0.92 [0.74, 0.99] \\ 0.92 [0.74, 0.99] \\ 0.92 [0.74, 0.99] \\ 0.90 [0.77, 1.00] \\ 0.88 [0.83, 0.92] \\ 0.70 (0.46, 0.88] \\ 0.90 [0.79, 0.97] \\ 0.99 [0.52, 1.00] \\ 0.88 [0.52, 1.00] \\ 0.62 [0.52, 0.71] \\ 0.62 [0.53, 0.71] \\ 1.00 [0.83, 1.00] \\ 1.00 [0.63, 1.00] \\ 0.98 [0.92, 1$	$\begin{array}{c} \textbf{Specificity (95% Cl)}\\ 0.23 [0.08, 0.45]\\ 0.49 [0.31, 0.66]\\ 0.09 [0.00, 0.41]\\ 0.85 [0.62, 0.97]\\ 0.16 [0.06, 0.31]\\ 0.14 [0.09, 0.21]\\ 0.33 [0.16, 0.56]\\ 0.85 [0.74, 0.92]\\ 0.78 [0.40, 0.97]\\ 0.32 [0.21, 0.45]\\ 0.20 [0.12, 0.31]\\ 0.39 [0.52, 1.00]\\ 0.93 [0.81, 0.99]\\ 0.32 [0.13, 0.57]\\ 0.42 [0.25, 0.61]\\ 0.42 [0.25, 0.61]\\ 0.41 [0.27, 0.53]\\ 0.34 [0.27, 0.45]\\ 1.00 [0.52, 1.00]\\ 0.25 [0.01, 0.35]\\ 0.34 [0.27, 0.45]\\ 1.01 [0.52, 1.01]\\ 0.21 [0.16, 0.28]\\ 1.00 [0.59, 1.00]\\ 0.25 [0.01, 0.81]\\ 0.11 [0.01, 0.35]\\ 0.16 [0.09, 0.24] \end{array}$	Sensitivity (95% CI)	Specificity (95% CI)
Belli 2002 2 Bender 1997 1 Drew 1998 6 Gilles 1993 1 Harada 2007 2 Hathaway 1999 Kimura 2010 Kimura 2010 Melani 1995 Memarse 2000 1 Murtay 2002 1 Muller 1998 1 Qayyum 2000 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ficity (95% Cl) 89 [0.65, 0.99] 97 [0.88, 1.00] 93 [0.81, 0.99] 92 [0.62, 1.00] 80 [0.44, 0.97] 00 [0.03, 1.00] 00 [0.63, 1.00] 00 [0.79, 1.00] 00 [0.79, 1.00] 83 [0.66, 0.93] 54 [0.37, 0.71] 96 [0.88, 1.00] 95 [0.76, 1.00] 95 [0.76, 1.00] 80 [0.28, 0.99]	Sensitivity (95% CI)	Specificity (95% CI)

Figure 16: Forest Plot for Breast cancer

The Diagnostic test accuracy is represented by the summary statistics and summary line from four sets of basic data, namely true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Representative summary statistics are the sensitivity, specificity. Forest plot of sensitivity and specificity of detecting cervical cancer with PET with the 95 % CI for each population of the included studies. A total of 99 studies were included in this meta-analysis. Among them, 32 studies had reported the performance of PET, 25 studies had reported the performance of PET/CT, 16 studies had reported the performance of MRI and 26 studies had reported the performance of CT, respectively. After pooling all studies, of CT, MRI, PET and PET/CT Forest plot of sensitivity and specificity of *CT 0.87 (0.85, 0.89), 0.35 (0.33, 0.38) MRI 0.97 (0.94, 0.98), 0.88(0.84, 0.91) PET 0.89 (0.86, 0.90) 0.91(0.89, 0.93) and PET/CT 0.86(0.83, 0.88) 0.91(0.89, 0.93) in detecting local recurrences, lesion basis, distant metastases, and breast lesions in Breast cancer with 95 % CI for each population of the included studies.*

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
СТ	886	882	133	482	0.87 [0.85, 0.89]	0.35 [0.33, 0.38]	•	•
MRI	262	43	9	315	0.97 [0.94, 0.98]	0.88 [0.84, 0.91]	•	-
PET	1028	85	136	887	0.88 [0.86, 0.90]	0.91 [0.89, 0.93]	•	
PET/CT	969	79	164	818	0.86 [0.83, 0.88]	0.91 [0.89, 0.93]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 17: Breast cancer Cumulative values

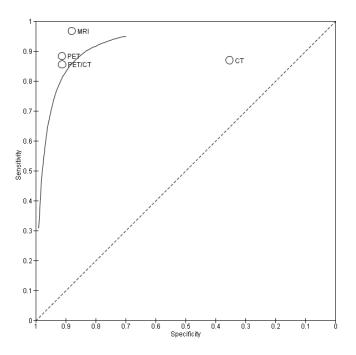
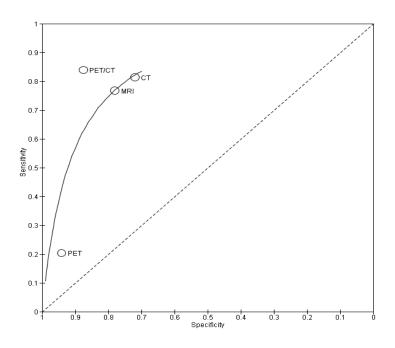
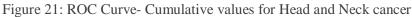


Figure 18: ROC Curve- Cumulative values for breast cancer

The above ROC curve for breast cancer shows MRI has outperformed with higher pooled sensitivity (0.97 [95% CI: 0.94, 0.98] and specificity (0.88 [95% CI: 0.84, 0.91] when compared to PET/CT, PET and CT.

PET/CT-Head and neck cancer

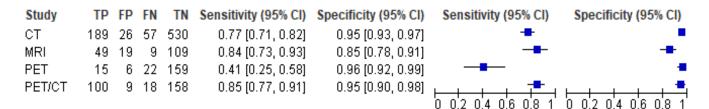

Study	TP			TN	Sensitivity (95% Cl) 1.00 [0.88, 1.00]	Specificity (95% Cl)	Sensitivity (95% CI) Specificity (95% CI)
Abgral 2009 Babin 2008	30		0 0	52 12	1.00 [0.88, 1.00]	0.85 [0.74, 0.93] 0.86 [0.57, 0.98]	
cetin 2013	16		3	11	0.84 [0.60, 0.97]	0.65 [0.38, 0.86]	_
Chan 2006	21		1	10	0.95 [0.77, 1.00]	0.83 [0.52, 0.98]	
Chauhan 2012 Folder: 2007	15		6	29	0.71 [0.48, 0.89] 0.94 [0.73, 1.00]	0.97 [0.83, 1.00]	
Fakhry 2007 Ghanooni 2011	17		1 1	8 87	0.94 [0.73, 1.00]	0.57 [0.29, 0.82] 0.84 [0.75, 0.90]	
Gordin 2006	23		2	25	0.92 [0.74, 0.99]	0.96 [0.80, 1.00]	
Gordin 2007	46		6	52	0.88 [0.77, 0.96]	0.95 [0.85, 0.99]	
Goshen 2005	11		0	4	1.00 [0.72, 1.00]	0.67 [0.22, 0.96]	_
Ho 2013	18		0	227	1.00 [0.81, 1.00]	0.97 [0.94, 0.99]	
Jeong 2007 Kao 1998	25 11		1	15 24	0.96 [0.80, 1.00] 1.00 [0.72, 1.00]	0.71 [0.48, 0.89] 0.96 [0.80, 1.00]	
Kim 2007	39		1	286	0.97 [0.87, 1.00]	0.93 [0.89, 0.95]	
Kim 2011	74		15	126	0.83 [0.74, 0.90]	0.91 [0.85, 0.95]	
Kim 2013	25	5	2	87	0.93 [0.76, 0.99]	0.95 [0.88, 0.98]	
Krabbe 2008	4		4	29	0.50 [0.16, 0.84]	0.97 [0.83, 1.00]	
Krabbe 2009	16		0	66	1.00 [0.79, 1.00]	0.72 [0.61, 0.81]	
Kubota 2004 Lee 2007	7 15		1	10 74	1.00 [0.59, 1.00] 0.94 [0.70, 1.00]	0.77 [0.46, 0.95] 0.94 [0.86, 0.98]	·
Lee 2015	15		5	18	0.75 [0.51, 0.91]	0.95 [0.74, 1.00]	_ _
Li 2001	20	3	2	18	0.91 [0.71, 0.99]	0.86 [0.64, 0.97]	_ --
Nahmias 2007	37		5	22	0.88 [0.74, 0.96]	0.69 [0.50, 0.84]	
Nakamura 2013	119		9	136	0.93 [0.87, 0.97]	0.96 [0.91, 0.98]	
Ng 2010 Paidpally 2013	48 22		7	112 182	0.87 [0.76, 0.95] 0.85 [0.65, 0.96]	0.90 [0.84, 0.95] 0.91 [0.86, 0.94]	
Robin 2015	22		1	81	0.96 [0.78, 1.00]	0.87 [0.79, 0.93]	
Roh 2007	30		3	26	0.91 [0.76, 0.98]	0.87 [0.69, 0.96]	
Roh 2014	27	10	11	43	0.71 [0.54, 0.85]	0.81 [0.68, 0.91]	
Salaun 2007	8		0	21	1.00 [0.63, 1.00]	0.95 [0.77, 1.00]	
Schroeder 2008	0		5	8	0.00 [0.00, 0.52]	1.00 [0.63, 1.00]	
Seitz 2009 Sohn 2016	39 16		2	0 22	0.95 [0.83, 0.99] 0.64 [0.43, 0.82]	Not estimable 0.92 (0.73, 0.99)	_
Stoeckli 2002	10		3	22	0.25 [0.01, 0.81]	0.88 [0.47, 1.00]	_
Stokkel 1999	17		ŏ	24	1.00 [0.80, 1.00]	0.77 [0.59, 0.90]	
Tsai 2002	14	1	0	13	1.00 [0.77, 1.00]	0.93 [0.66, 1.00]	
Wierzbicka 2011	31		5	39	0.86 [0.71, 0.95]	0.83 [0.69, 0.92]	
Wong 2002	69		3	78	0.96 [0.88, 0.99]	0.72 [0.62, 0.80]	
Yamaga 2018 Yen 2003	10 21		21 0	135 43	0.32 [0.17, 0.51] 1.00 [0.84, 1.00]	0.78 [0.71, 0.84] 0.93 [0.82, 0.99]	
Zundel 2011	4		ŏ	31	1.00 [0.40, 1.00]	0.65 [0.49, 0.78]	
							0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
PET-Head and neo	ck car	ncer					
Study	тр	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
				-			
Chang 2005	14	8	73	0	0.16 [0.09, 0.26]	0.00 [0.00, 0.37]	
Liu 2006	21	2	170	9	0.11 [0.07, 0.16]	0.82 [0.48, 0.98]	· · · · · · · · · · · · · · · · · · ·
Liu 2006 Shu 2006	21 18	2 8	170 17	9 91	0.11 [0.07, 0.16] 0.51 [0.34, 0.69]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96]	·
Liu 2006	21	2	170	9	0.11 [0.07, 0.16]	0.82 [0.48, 0.98]	
Liu 2006 Shu 2006	21 18 21	2 8 13	170 17	9 91	0.11 [0.07, 0.16] 0.51 [0.34, 0.69]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck	21 18 21	2 8 13 cer	170 17 30	9 91 393	0.11 (0.07, 0.16) 0.51 (0.34, 0.69) 0.41 (0.28, 0.56)	0.82 (0.48, 0.98) 0.92 (0.85, 0.96) 0.97 (0.95, 0.98)	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study	21 18 21	2 8 13 cer FP	170 17 30 FN	9 91 393 TN	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl)	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% CI)	Sensitivity (95% CI)
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck	21 18 21 cano TP	2 8 13 cer	170 17 30 FN 21	9 91 393	0.11 (0.07, 0.16) 0.51 (0.34, 0.69) 0.41 (0.28, 0.56)	0.82 (0.48, 0.98) 0.92 (0.85, 0.96) 0.97 (0.95, 0.98)	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995	21 18 21 Cano TP 96 21 5	2 8 13 cer 175 2 10	170 17 30 FN 21 6 4	9 91 393 TN 992 12 13	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% CI) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77]	
Liu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998	21 18 21 c can TP 96 21 5 57	2 8 13 cer 175 2 10 415	170 17 30 FN 21 6 4 1	9 91 393 TN 992 12 13 62	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005	21 18 21 Cean 96 21 57 32	2 8 13 cer 175 2 10 415 17	170 17 30 FN 21 6 4 1 8	9 91 393 TN 992 12 13 62 236	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003	21 18 21 Cean 96 21 57 32 32 3	2 8 13 cer 175 2 10 415 17 5	170 17 30 FN 21 6 4 1 8 3	9 91 393 TN 992 12 13 62	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 8 Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005	21 18 21 Cean 96 21 57 32	2 8 13 cer 175 2 10 415 17	170 17 30 FN 21 6 4 1 8 3 4	9 91 393 TN 992 12 13 62 236 162	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999	21 18 21 Cano 96 21 5 57 32 3 23 8 6	2 8 13 cer 175 2 10 415 17 5 11 10 17	170 17 30 FN 21 6 4 1 8 3 4 12 1	9 91 393 992 12 13 62 236 162 4 2 17	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 8 Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006	21 18 21 TP 96 21 5 57 32 3 23 8 6 10	2 8 13 Cer 175 2 105 415 17 5 11 10 17 3	170 17 30 FN 21 6 4 1 8 3 4 12 1 3	9 91 393 TN 992 12 13 62 236 162 4 2 17 4	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007	21 18 21 Ceand 96 21 5 7 32 3 23 8 6 10 11	2 8 13 Cer 175 2 10 415 17 5 11 10 17 3 1	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3	9 91 393 TN 992 12 13 62 236 162 236 162 4 2 17 4 6	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 8ensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995	21 18 21 TP 96 21 5 7 32 3 23 8 6 10 11 18	2 8 13 Cer 175 2 105 415 17 5 11 10 17 3	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3 1	9 91 393 TN 992 12 13 62 236 162 4 2 17 4	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.35] 0.79 [0.74, 1.00]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.45, 0.97]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007	21 18 21 Ceand 96 21 5 7 32 3 23 8 6 10 11	2 8 13 cer 175 2 10 415 17 5 11 10 17 3 1 3	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3	9 91 393 TN 992 12 13 62 236 162 236 162 4 2 17 4 6	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 8ensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00]	
Liu 2006 Shu-hang 2006 CT-Head and neck Stuu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010	21 18 21 Cano TP 96 21 5 57 32 32 3 23 8 6 10 11 18 8 10 10	2 8 13 FP 175 2 10 415 17 5 11 17 3 1 3 1 3 1 5 6 1	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3 10 0 2	9 91 393 TN 992 13 62 236 162 236 162 4 2 17 4 6 19 4 11	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.77 [0.46, 0.95] 0.79 [0.74, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.65, 0.97] 0.80 [0.28, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00]	
Liu 2006 Shu 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguint 1998 Paters 2012	21 18 21 Cano TP 96 21 5 57 32 3 3 23 8 6 10 11 18 8 10	2 8 13 Cer 175 2 10 415 11 5 11 10 17 3 1 3 1 56	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3 10 0 2	9 91 393 TN 992 13 62 236 162 236 162 4 2 17 4 6 19 4 1	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.95 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 0.99] 0.02 [0.00, 0.09]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 CT-Head and neck Stuu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010	21 18 21 TP 96 21 5 57 32 3 3 23 8 6 10 11 18 8 10 10 57	2 8 13 FPP 1755 2 10 4155 17 5 17 5 17 5 10 17 3 1 10 17 3 1 5 6 6 1 2	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3 10 0 2	9 91 393 TN 992 13 62 236 162 236 162 4 2 17 4 6 19 4 11	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.77 [0.46, 0.95] 0.79 [0.74, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.65, 0.97] 0.80 [0.28, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00]	
Liu 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck	21 18 21 TP 96 21 5 57 32 3 3 23 8 6 10 11 18 8 10 10 57	2 8 13 Cer FP 1755 2 10 4155 17 5 11 10 175 3 1 3 1 5 6 6 1 2 2 Cer	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3 1 0 0 2 17	9 91 393 TN 992 12 13 236 162 236 162 17 4 6 19 4 11 326	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.40 [0.19, 0.64] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.95 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.80, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.80 [0.28, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck	21 18 21 TP 96 21 5 57 32 3 3 23 8 6 10 11 18 8 10 10 57	2 8 13 cer FP 1755 2 105 175 5 111 10 177 5 11 10 177 3 1 1 5 6 6 12 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 1 0 0 2 27 17 FP	9 91 393 TN 992 12 13 236 162 236 162 17 4 6 19 4 11 326 FN	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.77 [0.46, 0.95] 0.95 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95%	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.80 [0.28, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] Specificity (95% Cl)	Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguint 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998	21 18 21 TP 96 21 5 57 32 3 3 23 3 23 8 6 10 11 18 8 10 10 57	2 8 13 cer FP 1755 2 10 4155 17 5 1 10 17 3 1 3 1 5 6 1 2 2 0 0 7 7 7 94	170 17 30 FN 21 6 4 1 2 1 3 3 4 1 3 3 1 0 0 2 2 7 7 FP 250	9 91 393 TN 992 212 236 162 236 162 2 4 2 177 4 6 19 4 1 11 326 FN 23	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.95] 0.77 [0.46, 0.86] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95%	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% CI) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.91 [0.95, 0.07] 0.92 [0.62, 1.00] 0.92 [0.62, 1.00] 0.93 [0.98, 1.00]	Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck	21 18 21 TP 96 21 5 57 32 3 3 23 3 23 8 6 10 11 18 8 10 10 57	2 8 13 cer FP 1755 2 105 175 5 111 10 177 5 11 10 177 3 1 1 5 6 6 12 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 1 0 0 2 27 17 FP	9 91 393 TN 992 12 13 236 162 236 162 17 4 6 19 4 11 326 FN	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.77 [0.46, 0.95] 0.95 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95%	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.87] 0.79 [0.76, 0.81] 0.79 [0.76, 0.81] 0.78]	Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1998 Akoglu 2005 Braams 1998 Curtin 1998	21 18 21 TP 96 21 5 57 32 3 3 23 3 23 8 6 10 11 18 8 10 10 57	2 8 13 Cer FP 1755 2 10 4155 17 5 11 17 3 1 1 5 6 6 12 2 NCE FP 94 16 5 3	170 17 30 FN 21 6 4 1 8 3 4 12 17 17 FP 250 16 382	9 91 393 TN 992 22 13 62 236 4 4 162 4 2 17 4 4 5 FN 326 FN 326 5	0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.94, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.95] 0.77 [0.46, 0.95] 0.77 [0.46, 0.95] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, (13 0.59 [0.39, (13 0.52)]) 134 0.33 [0.12, (15 0.51)] 0.51 [0.81, (10 0.51)] 0.51 [0.51, (10 0.51)] 0.52 [0.51, (10 0.51)] 0.52 [0.51, (10 0.51)] 0.53 [0.52, (10 0.51)] 0.55 [0.51, (10 0.51)]	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.91 [0.79 [0.76, 0.81] 0.79 [0.91, 0.98] 0.92 [0.91, 0.98] 0.92 [0.94, 0.94] 0.93 [0.94, 0.94] 0.94 [0.94, 0.94] 0.95 [0.94, 0.94] 0.95 [0.94, 0.94] 0.97	Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005	21 18 21 TP 96 21 5 57 32 3 3 23 3 23 8 6 10 11 18 8 10 10 57	2 8 13 FP 1755 2 10 415 17 5 11 17 3 1 1 5 6 6 1 2 Cer FP 1755 2 10 4155 17 3 1 1 5 6 6 17 5 3 1 3 7 5 3 7 3 7 5 5 3 7	170 17 30 FN 21 6 4 12 3 3 4 12 3 1 0 0 2 17 FP 250 1 6 3822 14	9 91 393 TN 992 12 13 2236 2236 2 162 236 162 2 17 4 4 6 19 9 4 11 11 326 FN 23 11 10 5 3	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.56, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.95 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] 917 0.80 [0.72, (13) 0.59 [0.39, (134) 0.33 [0.12, (195) 95 0.91 [0.81, (239) 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.87] 0.79 [0.76, 0.81] 0.79 [0.76, 0.81] 0.94 [0.91, 0.97] 0.94 [0.91, 0.97]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Shu-hang 2006 Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005	21 18 21 TP 96 21 5 57 32 3 3 23 3 23 8 6 10 11 18 8 10 10 57	2 8 13 cer FP 1755 2 100 4155 10 17 5 10 17 3 1 3 1 3 1 3 1 3 1 5 6 6 5 5 3 7 7 132	170 17 30 FN 21 6 4 1 2 1 6 4 1 2 17 FP 2500 6 3822 14 27	9 91 393 TN 992 22 236 162 4 2 22 236 162 4 4 1 11 326 FN 23 11 0 5 3 34	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.27, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.79 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, 0.13] 0.59 [0.39, 0.39, 0.12, 0.33] 0.33 [0.12, 0.33] 0.33 [0.80, 0.33] 0.33 [0.81, 0.23] 0.35 [0.80, 0.73, 0.36] 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] (5C1) Specificity (95% Cl) 0.87] 0.79 [0.76, 0.81] 0.79 [0.76, 0.81] 0.79 [0.76, 0.94] 0.82 [0.94 [0.91, 0.98] 0.97 [0.90 [0.86, 0.94] 0.90 [0.86, 0.94]	Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Ding 2005 Gu 2000	21 18 21 TP 96 21 5 57 32 3 3 23 3 23 8 6 10 11 18 8 10 10 57	2 8 13 Cer FP 175 2 10 4155 11 10 17 5 11 10 17 3 1 5 6 6 5 11 2 Cer TP 94 16 5 3 7 132 2 8	170 17 30 FN 21 6 4 1 8 3 4 1 3 1 0 2 2 17 FP 250 1 6 382 2 14 27 3 3	9 91 393 7 992 12 132 236 162 236 162 236 162 2 17 4 6 19 4 4 1 1 326 5 3 3 11 10 5 3 3 4 1	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.94, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.95 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.80 [0.72, (13) 0.59 [0.39, (134) 0.33 [0.12, 0] 1.30 (0.81, (239) 0.93 [0.80, (255) 0.80 [0.73, (50) 	6.22 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 1.79 [0.93 [0.66, 1.00] 1.62] 0.96 [0.91, 0.98] 0.91 [0.94 [0.84, 0.93]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Shu-hang 2006 Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005	21 18 21 TP 96 21 5 57 32 3 3 23 3 23 8 6 10 11 18 8 10 10 57	2 8 13 cer FP 1755 2 100 4155 10 17 5 10 17 3 1 3 1 3 1 3 1 3 1 5 6 6 5 5 3 7 7 132	170 17 30 FN 21 6 4 1 2 1 6 4 1 2 17 FP 2500 6 3822 14 27	9 91 393 TN 992 22 236 162 4 2 22 26 162 4 10 11 326 FN 23 11 10 5 3 34	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.27, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.79 [0.74, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, 0.13] 0.59 [0.39, 0.39, 0.12, 0.33] 0.33 [0.12, 0.33] 0.33 [0.80, 0.33] 0.33 [0.81, 0.23] 0.35 [0.80, 0.73, 0.36] 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.27 [0.80, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.97 [0.76, 0.81] 0.71 [0.79 [0.76, 0.81] 0.94 [0.91, 0.97] 0.85 [0.90 [0.86, 0.94] 0.94 [0.91, 0.97] 0.94 [0.84, 0.99] 0.77 [0.17 [0.02, 0.48]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Ding 2005 Gu 2000 Hafidh 2006 Haa 2000 Kau 1999	21 18 21 c cane 96 21 57 32 3 23 3 23 3 23 3 23 3 10 11 18 8 8 0 0 11 18 8 8 0 0 10 10 57 c cane 6 57 57 57 57 57 57 57 57 57 57 57 57 57	2 8 13 Cer FP 17552 10 415511 10 17 5 11 10 17 5 5 11 2 Cer FP 175511 10 17 5 5 11 2 2 Cer FP 175522 10 0 17 5 5 11 10 5 5 11 5 10 17 5 5 11 10 5 10 17 5 5 11 10 17 5 10 17 5 11 10 10 17 5 10 17 5 10 17 5 11 10 10 17 5 11 10 10 17 5 11 10 10 10 10 10 10 10 10 10 10 10 10	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 3 4 12 1 3 3 4 12 17 7 3 822 17	9 91 393 TN 992 12 132 236 4 2 236 162 2 17 4 6 19 4 4 11 326 FN 33 4 11 10 5 3 34 1 1 1 1 1 1	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.94, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.97 [0.49, 0.95] 0.77 [0.46, 0.95] 0.97 [0.49, 0.95] 0.97 [0.49, 0.95] 0.97 [0.49, 0.95] 0.97 [0.49, 0.95] 0.97 [0.46, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, (13) 0.59 [0.34] 0.33 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, (13) 0.93 [0.80, (22, 23) 0.93 [0.80, (23, 23) (134 0.33 [0.12, 24) (25 0.80 [0.73, (23, 24) (2 0.55 [0.32, (38) 0.73 [0.57, (15) 0.73 [0.57, (15) 0.74 [0.9, (15)	6.2 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.86 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.87] 0.79 [0.76, 0.81] 0.99 [0.98, 1.00] 4 Cl) Specificity (95% Cl) 0.99 [0.98, 1.00] 4 Cl) 0.99 [0.98, 1.00] 5 Cl) 0.99 [0.98, 0.94] 0.97] 0.27 [0.76, 0.81] 0.78] 0.93 [0.66, 1.00] 1.82] 0.96 [0.91, 0.93] 1.85] 0.90 [0.86, 0.94] 1.85] 0.94 [0.84, 0.93] 1.77] 0.17 [0.02, 0.48] 1.86] 0.94 [0.84, 0.93] 1.89] 0.47 [0.29, 0.65]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Braams 1995 Curtin 1998 Dammann 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 1995	21 18 21 c cane 96 21 57 32 3 23 3 23 3 23 3 23 3 10 11 18 8 8 0 0 11 18 8 8 0 0 10 10 57 c cane 6 57 57 57 57 57 57 57 57 57 57 57 57 57	2 8 13 Cer FP 17552 100 41572 100 1775 1100 1775 1100 1775 1100 1775 100 1775 100 1775 100 1775 100 100 100 100 100 100 100 10	170 17 30 FN 21 6 4 1 8 3 4 12 1 7 FP 2500 1 6 3822 17 FP 2500 1 6 3322 2 17 7 7 7	9 91 393 TN 992 12 132 2366 162 4 2 177 4 6 19 4 1 11 326 FN 23 11 10 5 34 19 11 15	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.86] 0.40 [0.19, 0.64] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.35] 0.95 [0.74, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.86, 0.86] TN Sensitivity (959 917 0.80 [0.72, (13) 0.59 [0.39, (23) 0.55 [0.30, (23) 0.55 [0.32, (38) 0.73 [0.57, (13) 0.56 [0.32, (38) 0.73 [0.57, (15) 0.67 [0.09, (15) 9 0.72 [0.47, (15) 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.99, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.92, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.65, 0.97] 0.80 [0.28, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] Specificity (95% Cl) 1.87] 0.79 [0.76, 0.81] 0.80 [0.42, 1.00] 0.99 [0.98, 1.00] Specificity (95% Cl) 1.87] 0.79 [0.76, 0.81] 0.93 [0.66, 1.00] 1.82] 0.94 [0.91, 0.93] 0.94 [0.91, 0.97] 1.85] 0.90 [0.86, 0.94] 0.91 [0.77] 0.17 [0.02, 0.48] 0.95 [0.83, 0.99] 1.99] 0.47 [0.29, 0.65] 0.90 [0.87] 0.90 [0.86] 0.91 [0.94 [0.91] 0.92] 0.94 [0.91, 0.94] 0.95 [0.83, 0.94] 0.95 [0.83, 0.96] 0.99 [0.47 [0.29, 0.65] 0.90 [0.80, 0.80] 0.90 [0.47 [0.29, 0.65] 0.90 [0.80, 0.80] 0.90 [0.47 [0.29, 0.65] 0.90 [0.80, 0.80] 0.90 [0.90, 0.90] 0.90 [0.90, 0	Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Shu-hang 2006 CT-Head and neck Shudy Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguint 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Ding 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 1998	21 18 21 c cane 96 21 57 32 3 23 3 23 3 23 3 23 3 10 11 18 8 8 0 0 11 18 8 8 0 0 10 10 57 c cane 6 57 57 57 57 57 57 57 57 57 57 57 57 57	2 8 13 13 14 17 5 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 10 10 17 5 10 10 10 10 10 10 10 10 10 10	170 177 30 FN 21 6 4 1 8 3 4 12 1 1 8 3 4 12 17 7 2 50 16 382 14 4 27 7 7 2	9 91 393 TN 992 12 132 62 162 2366 1992 4 2 17 4 6 19 4 11 326 FN 324 11 10 5 34 11 91 2 34 11 15 5 4	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.77 [0.46, 0.95] 0.77 [0.46, 0.95] 0.77 [0.46, 0.96] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, (13) 0.59 [0.39, (23) 0.51 [0.81, (239) 0.93 [0.80, (52, 22) 0.83 [0.52, 23) 0.89 [0.52, 22) 0.83 [0.52, 22) 0.83 [0.52, 23) 0.83 [0.52, 22) 0.83 [0.52, 22) 0.83 [0.52, 23) 0	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.08, 0.55] 0.17 [0.08, 0.55] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.91 [0.98, 1.00] 0.62] 0.92 [0.62, 1.00] 0.89 [0.98, 1.00] 0.62] 0.90 [0.66, 0.94] 0.91 [0.94 [0.91, 0.97] 0.92 [0.94, 0.93] 0.91 [0.94 [0.91, 0.93] 0.95 [0.83, 0.99] 0.47 [0.29, 0.65] 0.90 [0.45, 0.94] 0.94 [0.79, 0.90] 0.94 [0.79, 0.99]	Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1998 Akoglu 2005 Braams 1998 Dammann 2005 Ding 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 199 Nakamoto 2009	21 18 21 c cane 96 21 57 32 3 23 3 23 3 23 3 23 3 10 11 18 8 8 0 0 11 18 8 8 0 0 10 10 57 c cane 6 57 57 57 57 57 57 57 57 57 57 57 57 57	2 8 13 13 17 5 17 5 10 4 15 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 17 5 11 17 5 11 17 5 11 17 5 11 17 5 11 10 17 5 11 10 17 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	170 177 30 FN 211 6 4 1 8 3 4 12 13 3 4 12 13 3 4 12 13 3 4 12 13 3 12 17 FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP	9 91 393 TN 992 12 132 2366 162 4 2 177 4 6 19 4 1 11 326 FN 23 11 10 5 34 19 11 15	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.94, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.86 [0.42, 1.00] 0.86 [0.64, 0.96] 0.40 [0.19, 0.64] 0.86 [0.74, 1.00] 0.97 [0.49, 0.95] 0.77 [0.46, 0.96] 0.79 [0.49, 0.95] 0.77 [0.46, 0.96] 0.70 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, (13) 0.59 [0.31, (23) 0.39 [0.80, (22) 134 0.33 [0.12, (23) 0.39 (0.80, (23) (25 0.80 [0.73, (23) (2 0.55 [0.32, (23) 38 0.73 (0.57, (23) 0.72 [0.47, (30) 0.72 [0.47, (30) 0.72 [0.47, (30) 0.73 [0.57, (15) 0.75 [0.54, (15) 0.77 [0.47, (15) 0.72 [0.47, (15) 0.73 [0.55, (15) 0.73 [0.55, (15) 0.74 [0.56, (15) 0.75 [0.56, (15) 0.75 [0.56, (15) 0.75 [0.56, (15) <p< td=""><td>6.2 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.86 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.89 [0.98, 1.00] 8.61 [0.99] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] 5 Cl) Specificity (95% Cl) 1.87] 0.79 [0.76, 0.81] 1.78] 0.93 [0.66, 1.00] 1.82] 0.96 [0.91, 0.97] 1.85] 0.90 [0.86, 0.97] 1.85] 0.90 [0.84, 0.99] 0.77] 0.17 [0.02, 0.48] 1.86] 0.95 [0.83, 0.99] 1.99] 0.47 [0.29, 0.65] 1.90] 0.56 [0.30, 0.80] 1.94] 0.74 [0.79, 0.93] 1.94] 0.74 [0.79, 0.93] 1.94] 0.74 [0.74, 0.85] 1.94] 0.94 [0.74, 0.85] 1.94] 0.74 [0.74, 0.85] 1.94] 0.94 [0.74, 0.85] 1.95] 0.95 [0.95] 0.95 [</td><td>Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI)</td></p<>	6.2 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.86 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.89 [0.98, 1.00] 8.61 [0.99] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] 5 Cl) Specificity (95% Cl) 1.87] 0.79 [0.76, 0.81] 1.78] 0.93 [0.66, 1.00] 1.82] 0.96 [0.91, 0.97] 1.85] 0.90 [0.86, 0.97] 1.85] 0.90 [0.84, 0.99] 0.77] 0.17 [0.02, 0.48] 1.86] 0.95 [0.83, 0.99] 1.99] 0.47 [0.29, 0.65] 1.90] 0.56 [0.30, 0.80] 1.94] 0.74 [0.79, 0.93] 1.94] 0.74 [0.79, 0.93] 1.94] 0.74 [0.74, 0.85] 1.94] 0.94 [0.74, 0.85] 1.94] 0.74 [0.74, 0.85] 1.94] 0.94 [0.74, 0.85] 1.95] 0.95 [0.95] 0.95 [Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Shu-hang 2006 CT-Head and neck Shudy Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguint 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Ding 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 1998	21 18 21 TPP 96 21 57 32 3 23 8 6 10 11 18 8 10 57 K carr K carr 3 23 8 K 4 23 8 57 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K K K K K K K K	2 8 13 13 14 17 5 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 10 10 17 5 10 10 10 10 10 10 10 10 10 10	170 177 30 FN 21 6 4 1 8 3 4 12 1 1 8 3 4 12 17 7 2 50 16 382 14 4 27 7 7 2	9 91 393 TN 992 2366 192 2366 192 2366 199 4 2 17 4 6 19 4 1 1 326 FN 334 11 1 5 33 11 1 5 34 11 1 5 4 2 0 2 4 2 4 2 4 4 4 4 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 3 4 5 3 4 5 4 5	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.94, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.86 [0.42, 1.00] 0.86 [0.64, 0.96] 0.40 [0.19, 0.64] 0.86 [0.74, 1.00] 0.97 [0.49, 0.95] 0.77 [0.46, 0.96] 0.79 [0.49, 0.95] 0.77 [0.46, 0.96] 0.70 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, (13) 0.59 [0.31, (23) 0.39 [0.80, (22) 134 0.33 [0.12, (23) 0.39 (0.80, (23) (25 0.80 [0.73, (23) (2 0.55 [0.32, (23) 38 0.73 (0.57, (23) 0.72 [0.47, (30) 0.72 [0.47, (30) 0.72 [0.47, (30) 0.73 [0.57, (15) 0.75 [0.54, (15) 0.77 [0.47, (15) 0.72 [0.47, (15) 0.73 [0.55, (15) 0.73 [0.55, (15) 0.74 [0.56, (15) 0.75 [0.56, (15) 0.75 [0.56, (15) 0.75 [0.56, (15) <p< td=""><td>0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.65, 0.97] 0.80 [0.28, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] 0.91 [0.93 [0.66, 1.00] 0.92 [0.66, 1.00] 0.91 [0.94 [0.91, 0.93] 0.91 [0.94 [0.91, 0.93] 0.92 [0.86, 0.94] 0.93 [0.94 [0.91, 0.93] 0.94 [0.91, 0.93] 0.95 [0.83, 0.99] 0.97 [0.20 (0.86, 0.94] 0.99 [0.95 [0.83, 0.99] 0.91 [0.27, 0.66] 0.95 [0.83, 0.99] 0.93 [0.47 [0.29, 0.65] 0.90 [0.46 (0.79, 0.93] 0.99 [0.94 [0.79, 0.99] 0.99 [0.71 [0.54, 0.85] 0.90 [0.80 [0.28, 0.99] 0.90 [0.80 [0.28, 0.99] 0.90</td><td>Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI)</td></p<>	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.65, 0.97] 0.80 [0.28, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] 0.91 [0.93 [0.66, 1.00] 0.92 [0.66, 1.00] 0.91 [0.94 [0.91, 0.93] 0.91 [0.94 [0.91, 0.93] 0.92 [0.86, 0.94] 0.93 [0.94 [0.91, 0.93] 0.94 [0.91, 0.93] 0.95 [0.83, 0.99] 0.97 [0.20 (0.86, 0.94] 0.99 [0.95 [0.83, 0.99] 0.91 [0.27, 0.66] 0.95 [0.83, 0.99] 0.93 [0.47 [0.29, 0.65] 0.90 [0.46 (0.79, 0.93] 0.99 [0.94 [0.79, 0.99] 0.99 [0.71 [0.54, 0.85] 0.90 [0.80 [0.28, 0.99] 0.90	Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Ding 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 199 Nakamoto 2009 VandenBrekel 1999 Seitz 2009 VandenBrekel 1999	21 18 21 TPP 96 21 57 32 3 23 8 6 10 11 18 8 10 57 K carr K carr 3 23 8 K 4 23 8 57 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K K K K K K K K	2 8 13 13 17 2 10 4155 2 10 4155 17 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 3 7 1 1 5 5 3 7 1 1 5 5 3 7 1 1 3 1 3 1 5 5 3 7 1 1 3 1 5 5 3 7 1 1 3 1 3 1 3 1 5 5 3 7 1 1 3 2 2 2 1 2 2 2 8 7 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 3 7 2 2 3 7 1 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 1 0 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7	9 91 393 TN 992 12 132 236 2 162 236 2 162 2 17 4 6 19 4 1 1 326 FN 334 1 9 4 1 1 10 5 3 34 1 9 92 2 12 12 12 12 12 12 13 2 5 6 2 16 2 12 2 16 2 16 2 16 2 17 7 17 2 16 2 16	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.94, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.86 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.95 [0.74, 1.00] 0.95 [0.74, 1.00] 0.95 [0.74, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] 0.77 [0.66, 0.86] 0.78 [0.39, 0.39, 0.39] 1.30 0.52 [0.32, 0.39] 1.34 0.33 [0.12, 0.39] 1.34 0.33 [0.12, 0.39] 1.34 0.33 [0.12, 0.39] 1.35 0.80 [0.73, 0.42] 2 0.55 [0.32, 0.38] 0.73 [0.57, 0.96] 9 0.72 [0.47, 1.30] 0.88 0.52, 2.33 0.73 [0.57, 0.94] 1.5 0.67 [0.99, 1.30] 0.61 [0.43, 0.43] 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.86 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.91 [0.76, 0.81] 0.71 [0.70, 0.79 [0.76, 0.81] 0.72 [0.90 [0.86, 0.94] 0.93 [0.86, 0.94] 0.94 [0.94, 0.99] 0.77] 0.17 [0.02, 0.48] 0.86 [0.95 [0.83, 0.99] 0.77] 0.17 [0.02, 0.48] 0.86 [0.94 [0.91, 0.97] 0.99 [0.94 [0.84, 0.99] 0.77] 0.17 [0.02, 0.48] 0.99 [0.94 [0.80, 0.94] 0.99 [0.71 [0.54, 0.85] 0.90 [0.86, 0.94] 0.97 [0.97, 0.97] 0.97 [0.97, 0.97] 0.97 [0.97, 0.98] 0.94 [0.97, 1.00] 0.87 [0.97, 1.00] 0.87 [0.97, 1.00] 0.87 [0.97, 0.98] 0.99 [0.97, 1.00] 0.94 [0.94, 0.99] 0.75 [0.97 [0.95, 0.98] 0.76 [0.97, 1.00] 0.97 [0.97, 1.00] 0.99 [0.97, 1.00] 0.99 [0.97, 1.00] 0.99 [0.97, 1.	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Braams 1995 Curtin 1998 Dammann 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 199 Nakamoto 2009 Olmos 1999 Seitz 2009 VandenBrekel 199 Wang 1999 Wide 1999	21 18 21 TPP 96 21 57 32 3 23 8 6 10 11 18 8 10 57 K carr K carr 3 23 8 K 4 23 8 57 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K K K K K K K K	2 8 13 13 14 17 5 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 10 10 10 10 10 10 10 10 10	170 177 30 FN 21 6 4 1 8 3 4 12 17 8 4 12 17 16 382 250 16 382 277 3 10 2 217 7 2 11 1 30 0 0 0 0 17 17 10 17 17 10 17 10 10 17 17 10 17 10 10 17 10 10 17 10 10 10 10 10 10 10 10 10 10 10 10 10	9 91 393 TN 9922 12 132 2366 1992 2 2366 1992 2 17 4 6 1992 4 2 17 7 4 6 19 11 326 FN 3 34 1 9 11 1 5 3 34 1 9 11 1 5 4 2 0 42 2 0 42 15 9	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.64, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.95] 0.77 [0.46, 0.95] 0.77 [0.46, 0.95] 0.77 [0.66, 0.86] 0.77 [0.66, 0.86] 0.78 [0.39, 0] 0.33 [0.52, 0.98] 0.77 [0.66, 0.86] 0.93 [0.80, 0] 2.95 [0.32, 0] 38 [0.73 [0.57, 0] 15 [0.67 [0.09, 0] 9 [0.72 [0.47, 130] 0.80 [0.56, 0] 27 [0.29, 0] 15 [0.67 [0.59, 0] 130 [0.61 [0.43, 0] 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.27 [0.08, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.91 [0.92, 0.68, 1.00] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] 0.91 [0.92, 0.48, 1.00] 0.92 [0.62, 1.00] 0.93 [0.96, 0.94] 0.86 [0.94, 0.93] 0.91 [0.94 [0.91, 0.97] 0.80 [0.28, 0.94] 0.93 [0.94 [0.91, 0.93] 0.94 [0.94, 0.93] 0.95 [0.83, 0.93] 0.94 [0.79, 0.95] 0.93 [0.77] [0.16, 0.248] 0.95 [0.83, 0.93] 0.94 [0.79, 0.99] 0.94 [0.79, 0.99] 0.94 [0.79, 0.99] 0.94 [0.79, 0.99] 0.94 [0.94, 0.79, 0.99] 0.94 [0.94, 0.79, 0.99] 0.94 [0.94, 0.79, 0.99] 0.94 [0.94, 0.79, 0.99] 0.95 [0.97, 10.95, 0.88] 0.96 [0.97, 1.00] 0.99 [0.97, 1.00] 0.99 [0.76, 0.60, 0.87] 0.91 [0.95, 0.98] 0.76 [0.60, 0.87]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Ding 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 199 Nakamoto 2009 VandenBrekel 1999 Seitz 2009 VandenBrekel 1999	21 18 21 TPP 96 21 57 32 3 23 8 6 10 11 18 8 10 57 K carr K carr 3 23 8 K 4 23 8 57 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K K K K K K K K	2 8 13 13 17 2 10 4155 2 10 4155 17 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 3 7 1 1 5 5 3 7 1 1 5 5 3 7 1 1 3 1 3 1 5 5 3 7 1 1 3 1 5 5 3 7 1 1 3 1 3 1 3 1 5 5 3 7 1 1 3 2 2 2 1 2 2 2 8 7 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 3 7 2 2 3 7 1 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 2 3 7 2 2 3 7 2 2 3 7 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	170 17 30 FN 21 6 4 1 8 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 4 12 1 3 1 0 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7	9 91 393 TN 9922 2366 1922 2362 4 2 17 4 6 19 4 4 11 326 FN 34 11 5 34 11 5 34 11 5 4 2 0 0	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.94, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.86 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.95 [0.74, 1.00] 0.95 [0.74, 1.00] 0.95 [0.74, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] 0.77 [0.66, 0.86] 0.78 [0.39, 0.39, 0.39] 1.30 0.52 [0.32, 0.39] 1.34 0.33 [0.12, 0.39] 1.34 0.33 [0.12, 0.39] 1.34 0.33 [0.12, 0.39] 1.35 0.80 [0.73, 0.42] 2 0.55 [0.32, 0.38] 0.73 [0.57, 0.96] 9 0.72 [0.47, 1.30] 0.88 0.52, 2.33 0.73 [0.57, 0.94] 1.5 0.67 [0.99, 1.30] 0.61 [0.43, 0.43] 	6 CI) Specificity (95% CI) 0.82 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% CI) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.89 [0.98, 0.99] 0.02 [0.00, 0.09] 0.92 [0.62, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 1.77] 0.79 [0.76, 0.81] 0.78] 0.94 [0.94, 0.94] 0.79 [0.96, 0.94] 0.86 [0.94, 0.94] 0.91 [0.95 [0.83, 0.99] 0.94 [0.94, 0.93] 0.95 [0.83, 0.99] 0.94 [0.79, 0.93] 0.94 [0.79, 0.93] 0.95 [0.30, 0.80] 0.95 [0.30, 0.80] 0.94 [0.79, 0.93] 0.94 [0.79, 0.93] 0.95 [0.30, 0.80] 0.94 [0.79, 0.93] 0.94 [0.79, 0.93] 0.95 [0.30, 0.80] 0.95 [0.30, 0.80] 0.95 [0.30, 0.80] 0.95 [0.30, 0.80] 0.95 [0.30, 0.80] 0.95 [0.35, 0.70] 0.53 [0.35, 0.70] 0.53 [0.35, 0.70]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1998 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1998 Akoglu 2005 Braams 1998 Curtin 1998 Dammann 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 199 Nakamoto 2009 VandenBrekel 199 Wang 1999 Wide 1999 Wide 1999 Wide 1999	21 18 21 TPP 96 21 57 32 3 23 8 6 10 11 18 8 10 57 K carr K carr 3 23 8 K 4 23 8 57 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K K K K K K K K	2 8 13 Cer FP 177 5 11 10 415 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 17 5 11 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 2 10 5 11 10 5 11 10 5 11 10 5 11 10 5 11 10 5 11 10 5 11 10 5 11 10 5 11 10 10 10 10 10 10 10 10 10 10 10 10	170 177 30 FN 21 6 4 1 8 3 4 12 1 3 3 12 17 FP 250 382 17 7 211 13 0 0 2 17 FP 16 4 1 3 10 0 2 17 17 10 17 17 17 17 17 17 17 17 17 17	9 91 393 TN 9922 2366 1922 2362 4 2 17 4 6 19 4 4 11 326 FN 34 11 5 34 11 5 34 11 5 4 2 0 0	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.88] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.95] 0.77 [0.46, 0.95] 0.77 [0.46, 0.96] 0.80 [0.72, 0] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 1.00 [0.63, 1.00] 0.83 [0.52, 0.98] 0.77 [0.66, 0.86] 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.90, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.91 [0.46, 0.94] 0.93 [0.66, 0.94] 0.93 [0.66, 0.94] 0.93 [0.66, 0.94] 0.94 [0.94, 0.93] 0.77] 0.17 [0.02, 0.48] 0.95 [0.90 [0.86, 0.94] 0.96 [0.93, 0.93] 0.91 [0.47, 0.29, 0.65] 0.90 [0.56 [0.30, 0.80] 0.94 [0.94, 0.93] 0.94 [0.94, 0.93] 0.95 [0.93, 0.96] 0.99 [0.95, 0.98] 0.99 [0.95, 0.98] 0.99 [0.97, 1.00] 0.83 [0.76 [0.60, 0.87] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00]	Sensitivity (95% CI)
Liu 2006 Shu-hang 2006 Shu-hang 2006 CT-Head and neck Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Eida 2003 Fan 2006 Hafidh 2006 Kau 1999 Ke 2006 Lu 2007 Mcguirt 1995 Paulus 1998 Peters 2012 Wu 2010 Yoon 2009 MRI-Head and neck Study Adams 1998 Akoglu 2005 Braams 1995 Curtin 1998 Dammann 2005 Ding 2005 Gu 2000 Hafidh 2006 Hao 2000 Kau 1999 Laubenbacher 199 Nakamoto 2009 VandenBrekel 1999 ViandenBrekel 1999 Wide 1999 Wide 1999 Wide 1999 Wilson 1994 Yoon 2009	21 18 21 TPP 96 21 57 32 3 23 8 6 10 11 18 8 10 57 K carr K carr 3 23 8 K 4 23 8 57 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K 57 K K K K K K K K	2 8 13 13 17 17 17 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 10 17 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 170\\ 17\\ 30\\ FN\\ 21\\ 6\\ 4\\ 1\\ 3\\ 3\\ 4\\ 12\\ 1\\ 3\\ 3\\ 1\\ 0\\ 0\\ 2\\ 17\\ FP\\ 250\\ 1\\ 6\\ 382\\ 2\\ 17\\ 7\\ 2\\ 1\\ 1\\ 1\\ 0\\ 11\\ 1\\ 16\\ 2\end{array}$	9 91 393 TN 992 12 132 236 62 236 62 17 4 6 19 4 1 11 326 5 34 1 9 11 1 5 4 2 0 2 15 9 0 2 12 12 2 36 2 36 2 12 2 13 2 5 2 36 2 12 2 13 2 2 36 2 12 2 12 2 12 2	 0.11 [0.07, 0.16] 0.51 [0.34, 0.69] 0.51 [0.34, 0.69] 0.41 [0.28, 0.56] Sensitivity (95% Cl) 0.82 [0.74, 0.89] 0.78 [0.58, 0.91] 0.56 [0.21, 0.86] 0.98 [0.91, 1.00] 0.80 [0.64, 0.91] 0.50 [0.12, 0.86] 0.40 [0.19, 0.64] 0.85 [0.66, 0.96] 0.40 [0.19, 0.64] 0.86 [0.42, 1.00] 0.77 [0.46, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.95] 0.79 [0.49, 0.96] 0.65 [0.52, 0.98] 0.77 [0.66, 0.86] TN Sensitivity (95% 917 0.80 [0.72, (13) 0.59 [0.39, (03), (05) 13 0.59 [0.39, (052, 0.98] 0.77 [0.66, 0.86] 25 0.80 [0.73, (25) 0.80 [0.52, (23) 0.55 0.32, (38) 0.73 [0.57, (15) 0.67 [0.99, (05) 9 0.72 [0.47, (30) 0.80 [0.56, (27) 15 0.67 [0.59, (27) 13 0.67 [0.48, (27) 13 0.67 [0.48, (27) 13 0.67 [0.43, (34) 0.67 [0.43, (34) 0.67 [0.46, (27) 13 0.67 [0.46, (27) 14 1.00 [0.83, (27) 15 0.67 [0.46, (27) 16 0.67 [0.59, (27) 17 0.50 [0.50, (27) 18 1.00 [0.80, (28) 18 1.00 [0.80, (28) 18 1.00 [0.80, (28) 	0.82 [0.48, 0.98] 0.92 [0.85, 0.96] 0.97 [0.95, 0.98] Specificity (95% Cl) 0.85 [0.83, 0.87] 0.86 [0.57, 0.98] 0.57 [0.34, 0.77] 0.13 [0.10, 0.16] 0.93 [0.89, 0.96] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.93, 0.99] 0.97 [0.90, 0.55] 0.17 [0.02, 0.48] 0.50 [0.32, 0.68] 0.57 [0.18, 0.90] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.86 [0.42, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00] 0.91 [0.46, 0.94] 0.93 [0.66, 0.94] 0.93 [0.66, 0.94] 0.93 [0.66, 0.94] 0.94 [0.94, 0.93] 0.77] 0.17 [0.02, 0.48] 0.95 [0.90 [0.86, 0.94] 0.96 [0.93, 0.93] 0.91 [0.47, 0.29, 0.65] 0.90 [0.56 [0.30, 0.80] 0.94 [0.94, 0.93] 0.94 [0.94, 0.93] 0.95 [0.93, 0.96] 0.99 [0.95, 0.98] 0.99 [0.95, 0.98] 0.99 [0.97, 1.00] 0.83 [0.76 [0.60, 0.87] 0.99 [0.98, 1.00] 0.99 [0.98, 1.00]	Sensitivity (95% CI)

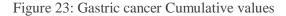

Figure 19: Forest Plot for Head and neck cancer

The Diagnostic test accuracy is represented by the summary statistics and summary line from four sets of basic data, namely true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Representative summary statistics are the sensitivity, specificity. Forest plot of sensitivity and specificity of detecting cervical cancer with PET with the 95 % CI for each population of the included studies. A total of 81 studies were included in this meta-analysis. Among them, 4 studies had reported the performance of PET, 41 studies had reported the performance of PET/CT, 20 studies had reported the performance of MRI and 16 studies had reported the performance of CT, respectively. After pooling all studies, of CT, MRI, PET and PET/CT Forest plot of sensitivity and specificity of *CT 0.81(0.77,0.85)*, 0.72(0.70, 0.74) *MRI 0.77(0.74,0.79)*, 0.78(0.77,0.79) *PET 0.20 (0.16, 0.25) 0.94(0.92, 0.96) and PET/CT 0.84(0.82,0.86) 0.88(0.86,0.89)* in detecting Lymph node metastasis, detection of recurrence in patients and detecting neck levels I, II, and III with head and neck cancer Head and neck cancer with 95 % CI for each population of the included studies.

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
СТ	375	729	86	1871	0.81 [0.77, 0.85]	0.72 [0.70, 0.74]	+	•
MRI	673	776	204	2760	0.77 [0.74, 0.79]	0.78 [0.77, 0.79]	•	•
PET	74	31	290	493	0.20 [0.16, 0.25]	0.94 [0.92, 0.96]	•	•
PET/CT	1000	326	192	2292	0.84 [0.82, 0.86]	0.88 [0.86, 0.89]		
							<u>'n n'2 n'4 n'6 n'8 1'</u>	

Figure 20: Head and Neck cancer Cumulative values




The above ROC curve for head and neck cancer shows PET/CT has outperformed with higher pooled sensitivity (0.84 [95% CI: 0.84, 0.86] and specificity (0.88 [95% CI: 0.86, 0.89] when compared to MRI, PET and CT.

PET/CT-Gastric cancer Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Dirisamer 2009 30 1 30 0.97 [0.83, 1.00] 0.97 [0.83, 1.00] 1 Kawanaka 2016 29 0 0.69 [0.53, 0.82] 1.00 [0.92, 1.00] 13 44 Satoh2011 25 0.96 [0.80, 1.00] 0.94 [0.86, 0.98] 5 1 76 Soussan 2012 16 3 3 8 0.84 [0.60, 0.97] 0.73 [0.39, 0.94] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 PET-Gastric cancer Study ΤР FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Chen 2005 3 1 7 57 0.30 [0.07, 0.65] 0.98 [0.91, 1.00] 2 5 0.50 [0.01, 0.99] 0.71 [0.29, 0.96] Kim 2011 1 1 Lim 2006 6 1 11 94 0.35 [0.14, 0.62] 0.99 [0.94, 1.00] Potter 2002 5 2 3 3 0.63 [0.24, 0.91] 0.60 [0.15, 0.95] 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 n'2 CT-Gastric cancer FP FN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Study TP ΤN Duhr 2011 31 1 1 4 0.97 [0.84, 1.00] 0.80 [0.28, 0.99] Giganti 2016 18 3 2 32 0.90 [0.68, 0.99] 0.91 [0.77, 0.98] Karakoyun 2014 0.97 [0.87, 1.00] 39 4 1 11 0.73 [0.45, 0.92] 1.00 [0.92, 1.00] Kawanaka 2016 30 0 12 44 0.71 [0.55, 0.84] 15 0.92 [0.62, 1.00] Kim 2011 44 1 11 0.75 [0.62, 0.85] Kim SJ 2009 27 17 26 428 0.51 [0.37, 0.65] 0.96 [0.94, 0.98] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 MRI-Gastric cancer Sensitivity (95% CI) Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Specificity (95% CI) Fuji 2008 13 2 10 0.87 [0.60, 0.98] 0.91 [0.59, 1.00] 1 Satoh2011 20 16 4 0.83 [0.63, 0.95] 0.85 [0.77, 0.91] 90 Soussan 2012 16 2 3 9 0.84 [0.60, 0.97] 0.82 [0.48, 0.98] 0.2 0.4 0.6 0.8 1

Figure 22: Forest Plot for Gastric Cancer

The Diagnostic test accuracy is represented by the summary statistics and summary line from four sets of basic data, namely true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Representative summary statistics are the sensitivity, specificity. Forest plot of sensitivity and specificity of detecting cervical cancer with PET with the 95 % CI for each population of the included studies. A total of 17 studies were included in this meta-analysis. Among them, 4 studies had reported the performance of PET, 4 studies had reported the performance of PET/CT, 3 studies had reported the performance of MRI and 7 studies had reported the performance of CT, respectively. After pooling all studies, of CT, MRI, PET and PET/CT Forest plot of *sensitivity and specificity of CT 0.77(0.71,0.82), 0.95(0.93,0.97) MRI 0.84(0.73,0.93), 0.850.78,0.91() PET 0.41(0.25,0.58) 0.96(0.92,0.99) and PET/CT 0.85(0.77,0.91) 0.95 (0.90, 0.98) in detecting recurrent gastric cancer and Peritoneal metastases in Gastric cancer with 95 % CI for each population of the included studies.*

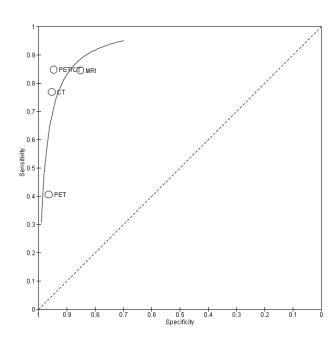


Figure 24: ROC Curve- Cumulative values for Gastric cancer

The above ROC curve for gastric cancer shows PET/CT has outperformed with higher pooled sensitivity (0.85 [95% CI: 0.77, 0.91] and specificity (0.95 [95% CI: 0.90, 0.98] when compared to MRI, PET and CT.

PET/CT-Lung Cancer

PET/CT-Lung Cancer								
Study Al-Sarraf 2008 Annema 2010 Aralan 2011 Azad 2010 Bille 2003 Bille 2013 Bradley 2004 Brink 2007 Dalli 2013 Darling 2011 De wever 2007 Degirmenci 2008 El-Harin 2012 Fischer 2011 Gunluoglu 2011 Harders 2012 Hauber 2001 Herth 2010 Hu 2011 Hwangbo 2003 Kamel 2003 Kuiz 2012	45 934826199109744406638561387911321920802477191839972368640744489601752277865 1 12 73131 9744406638561387911321920802477191839972368640744489601752277865 1 1 1 2 7	073113710018865200020502550587001270962602901075100005606078084810984454110136 13 11 12 1 11 2 7 4 2 1 1 13 11 12 1 4 2 1 1	33017720028010266101184661375946090704984699049860826958161596730602302144422103020202371	2237-11-350472-1-1334539225733322323353375533773377-13433-1-133030454155354047300572335523	$\begin{aligned} \textbf{Sensitivity (95% CI)} \\ 0.48 [0.37, 0.58] \\ 0.82 [0.71, 0.90] \\ 1.00 [0.66, 1.00] \\ 0.45 [0.27, 0.64] \\ 1.00] \\ 0.46 [0.27, 0.64] \\ 1.00] \\ 1.00 [0.16, 1.00] \\ 0.45 [0.27, 0.64] \\ 1.00] \\ 1.00 [0.95, 1.00] \\ 0.92 [0.86, 0.96] \\ 0.92 [0.86, 0.96] \\ 0.92 [0.86, 0.96] \\ 0.92 [0.86, 0.96] \\ 0.91 [0.59, 1.00] \\ 0.91 [0.59, 1.00] \\ 0.91 [0.59, 1.00] \\ 0.91 [0.59, 1.00] \\ 0.62 [0.41, 0.87] \\ 0.70 [0.46, 0.88] \\ 0.71 [0.54, 0.08] \\ 0.70 [0.46, 0.88] \\ 0.91 [0.59, 1.00] \\ 0.62 [0.41, 0.80] \\ 0.62 [0.41, 0.80] \\ 0.63 [0.64, 0.98] \\ 0.70 [0.46, 0.88] \\ 0.63 [0.64, 0.98] \\ 0.70 [0.46, 0.88] \\ 0.63 [0.64, 0.99] \\ 0.70 [0.31, 0.69] \\ 0.50 [0.31, 0.69] \\ 0.51 [0.57, 0.95] \\ 0.61 [0.57, 0.86] \\ 0.70 [0.51, 0.86] \\ 0.91 [0.72, 0.97] \\ 0.62 [0.47, 0.75] \\ 0.61 [0.54, 0.68] \\ 0.70 [0.55, 0.90] \\ 0.53 [0.29, 0.76] \\ 0.76 [0.56, 0.90] \\ 0.53 [0.29, 0.76] \\ 0.76 [0.56, 0.90] \\ 0.57 [0.86, 1.00] \\ 0.68 [0.43, 0.87] \\ 0.90 [0.79, 0.97] \\ 0.84 [0.70, 0.93] \\ 0.66 [0.43, 0.87] \\ 0.90 [0.79, 0.97] \\ 0.84 [0.70, 0.93] \\ 0.90 [0.79, 0.97] \\ 0.78 [0.54, 0.68] \\ 0.77 [0.56, 0.91] \\ 0.90 [0.79, 0.97] \\ 0.78 [0.54, 0.68] \\ 0.77 [0.56, 0.91] \\ 0.90 [0.79, 0.97] \\ 0.79 [0.70, 0.86] \\ 0.70 [0.53, 0.92] \\ 0.77 [0.56, 0.91] \\ 0.90 [0.79, 0.97] \\ 0.79 [0.70, 0.86] \\ 0.70 [0.53, 0.92] \\ 0.77 [0.56, 0.91] \\ 0.90 [0.73, 0.93] \\ 0.91 [0.73, 0.92] \\ 0.73 [0.74, 0.78] \\ 0.92 [0.73, 0.92] \\ 0.73 [0.74, 0.93] \\ 0.84 [0.60, 0.97] \\ 1.00 [0.84 [0.77, 0.96] \\ 0.92 [0.73, 0.94] \\ 0.93 [0.76, 0.91] \\ 0.93 [0.76, 0.92] \\ 0.73 [0.76, 0.93] \\ 0.93 [0.76, 0.93] \\ 0.93 [0.76, 0.93] \\ 0.93 [0.76, 0.93] \\ 0.93 [0.76, 0.93] \\ 0.93 [0.76, 0.93] \\ 0.93 [0.76, 0.93] \\ 0.93 [0.77, 0.56] \\ 0.93 [0.77, 0.56] \\ 0.93 [0.77, 0.98] \\ 0.93 [0.77, 0.98] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [0.76, 0.99] \\ 0.93 [$	Specificity (95% C1) 0.98 [0.96, 0.99] 1.00 [0.93, 1.00] 1.00 [0.87, 1.00] 0.95 [0.83, 0.98] 0.96 [0.77, 1.00] 0.86 [0.86, 0.98] 0.96 [0.77, 1.00] 0.86 [0.86, 0.98] 0.95 [0.77, 1.00] 0.95 [0.77, 1.00] 0.95 [0.77, 1.00] 0.95 [0.77, 1.00] 0.95 [0.77, 1.00] 0.95 [0.77, 1.00] 0.95 [0.77, 1.00] 1.00 [0.92, 1.00] 0.95 [0.77, 1.00] 0.95 [0.77, 1.00] 0.95 [0.76, 0.92] 0.94 [0.86, 0.97] 1.00 [0.96, 1.00] 1.00 [0.95, 1.00] 0.95 [0.77, 1.00] 0.95 [0.76, 0.92] 0.94 [0.86, 0.97] 1.00 [0.54, 1.00] 0.77 [0.56, 0.92] 0.74 [0.83, 0.83] 1.00 [0.54, 1.00] 0.77 [0.56, 0.92] 1.00 [0.54, 1.00] 0.77 [0.56, 0.92] 1.00 [0.95, 1.00] 0.84 [0.80, 0.87] 0.85 [0.90, 0.98] 1.00 [0.78, 1.00] 0.95 [0.90, 0.98] 1.00 [0.78, 1.00] 0.95 [0.90, 0.98] 1.00 [0.78, 1.00] 0.96 [0.94, 0.77] 0.86 [0.94, 0.77] 0.86 [0.56, 0.79] 0.80 [0.80, 0.83] 1.00 [0.77, 1.00] 1.00 [0.74, 1.00] 0.96 [0.94, 0.97] 1.00 [0.74, 1.00] 0.96 [0.94, 0.97] 1.00 [0.74, 1.00] 0.96 [0.40, 0.94] 1.00 [0.97, 1.00] 0.95 [0.80, 0.88] 1.00 [0.97, 1.00] 0.55 [0.27, 0.70] 0.68 [0.42, 0.94] 1.00 [0.97, 1.00] 0.55 [0.27, 0.93] 1.00 [0.97, 1.00] 0.55 [0.27, 0.93] 1.00 [0.97, 1.00] 0.55 [0.98, 0.88] 1.00 [0.97, 1.00] 0.95 [0.80, 0.78] 1.00 [0.97, 1.00] 0.95 [0.80, 0.78] 0.68 [0.79, 0.94] 1.00 [0.97, 1.00] 0.95 [0.80, 0.79] 0.95 [0.90, 0.98] 0.85 [0.50, 0.79] 0.95 [0.90, 0.98] 0.85 [0.79, 0.91] 0.95 [0.90, 0.98] 0.85 [0.79, 0.91] 0.95 [0.90, 0.93] 0.85 [0.74, 0.93] 0.86 [0.79, 0.94] 0.90 [0.84, 0.94] 0.90 [0.96, 1.00] 0.95 [0.90, 0.95] 0.96 [0.79, 0.96] 0.96 [0.79	Sensitivity (95% CI)	Specificity (95% Cl)
Study Bury 1997 Chin 1995 Guhlimann 1997 Gupti 201097 Hard 201097 Hard 201097 Hard 201097 Pieterman 2000 Poncelet 2001 Sasaki 1996 Saunders 1999 Sacott 1994 Scott 1994 Scott 1997 Vaik 1995 Vansteenkiste 1997 Vasuomi 0 2009 CT-Lung cancer Study Bury 1997 Chin 1995 Gupta 2000 Hagberg 1997 Gupta 2000 Hagberg 1997 Gupta 2000 Hagberg 1997 Steinerta 2000 Hagberg 1997 Sasaki 1996 Saunders 1997 Sazon 1996 Scott 1994 Scott 1996 Steinert 1997 Szlubowski 2012 Vaik 1995 Vaik 1995 Vaik 1995 Vaik 1995 Vaimann 2005 Wahl	T 1 7 31 5 60 9 6 3 2 6 0 9 1 8 6 9 6 9 6 9 1 1 1 5 6 6 9 6 9 6 9 1 1 1 2 9 2 2 0 9 1 8 7 1 5 6 6 9 6 9 6 1 3 3 1 6 6 9 0 9 1 1 1 2 7 1 1 6 6 9 0 9 1 1 1 1 2 7 1 1 1 1 1 2 7 1 1 1 1 1 2 7 1 1 1 1	0408030131341 FP8336044777723522043 241777723522043	2222343345010345298 F 347748846232323439450110345298 F 34774884623232344595	N 27777910435698394330 N 484990666729059048217	Sensitivity (95% Cl) 0.86 [0.57, 0.98] 0.78 [0.40, 0.97] 0.87 [0.40, 0.97] 0.87 [0.40, 0.97] 0.91 [0.778, 0.93] 0.91 [0.778, 0.93] 0.91 [0.778, 0.93] 0.71 [0.44, 0.98] 0.71 [0.44, 0.90] 1.00 [0.79, 1.00] 0.67 [0.30, 0.93] 0.71 [0.44, 0.90] 1.00 [0.66, 1.00] 0.89 [0.72, 0.98] 0.87 [0.38, 0.88] 0.87 [0.79, 0.98] 0.83 [0.63, 0.95] 0.65 [0.21, 0.98] 0.56 [0.21, 0.86] 0.56 [0.21, 0.86]	Specificity (95% C) 1.00 [0.93, 1.00] 0.81 [0.58, 0.95] 1.00 [0.80, 1.00] 0.91 [0.76, 0.98] 0.91 [0.76, 0.93] 0.91 [0.76, 0.93] 0.98 [0.90, 1.90] 0.97 [0.90, 1.00] 0.97 [0.90, 1.00] 0.97 [0.90, 1.00] 0.97 [0.90, 1.00] 0.97 [0.90, 1.00] 0.99 [0.94, 1.00] 0.99 [0.94, 1.00] 0.99 [0.94, 1.00] 0.97 [0.85, 1.00] 0.97 [0.85, 1.00] 0.97 [0.85, 1.00] 0.85 [0.72, 0.93] 0.85 [0.72, 0.93] 0.85 [0.72, 0.93] 0.85 [0.72, 0.93] 0.86 [0.64, 0.97] 1.00 [0.66, 0.96] 0.69 [0.59, 0.77] 0.88 [0.73, 0.98] 0.69 [0.59, 0.77] 0.88 [0.75, 0.96] 0.97 [0.83 [0.59, 0.96] 0.97 [0.83 [0.59, 0.96] 0.93 [0.97, 0.98] 0.93 [0.97, 0.98] 0.93 [0.97, 0.98] 0.93 [0.97, 0.98] 0.93 [0.92, 1.00] 0.94 [0.87, 0.98] 0.93 [0.92, 1.00] 0.93 [0.92, 1.00] 0.73 [0.59, 0.84] 0.73 [0.44, 0.20, 0.70] 1.00 [0.72, 1.00] 0.44 [0.20, 0.70]	Sensitivity (95% Cl)	Specificity (95% CI)
Stuart 2019 2 Stuart A 2019 2 Tassia 2020 6	P FP 8 6 1 21 1 4 8 1	26 24	TN 126 129 162 23 0	Sei	nsitivity (95% Cl) Sp 0.50 (0.36, 0.64) 0.54 (0.39, 0.68) 0.74 (0.64, 0.83) 0.87 (0.77, 0.94) 0.31 (0.14, 0.52)	ecificity (95% CI) 0.93 (0.88, 0.97) 0.96 (0.91, 0.98) 0.89 (0.83, 0.93) 0.85 (0.66, 0.96) 0.80 (0.00, 0.97)	Sensitivity (95% CI)	Specificity (95% CI)

Figure 25: Forest Plot for Lung cancer

The Diagnostic test accuracy is represented by the summary statistics and summary line from four sets of basic data, namely true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Representative summary statistics are the sensitivity, specificity. Forest plot of sensitivity and specificity of detecting cervical cancer with PET with the 95 % CI for each population of the included studies. A total of 125 studies were included in this meta-analysis. Among them, 18 studies had reported the performance of PET, 82 studies had reported the performance of PET/CT, 5 studies had reported the performance of MRI and 20 studies had reported the performance of CT, respectively. After pooling all studies, of CT, MRI, PET and PET/CT Forest plot of sensitivity and specificity of *CT* 0.71 (0.66, 0.75), 0.82 (0.80, 0.85) *MRI* 0.65(0.59, 0.71), 0.91(0.89, 0.94) *PET* 0.83 (0.79, 0.86) 0.93 (0.91 0.95) and *PET/CT* 0.78(0.77, 0.80) 0.90(0.89, 0.90) in detecting mediastinal lymph node metastases, detecting stage IIIb, local T and N stage, M-stage lung cancer, solitary pulmonary nodule in lung cancer with 95 % CI for each population of the included studies.

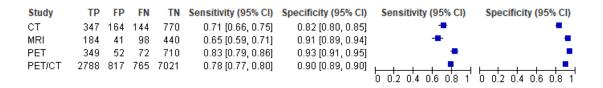


Figure 26: Lung cancer Cumulative values

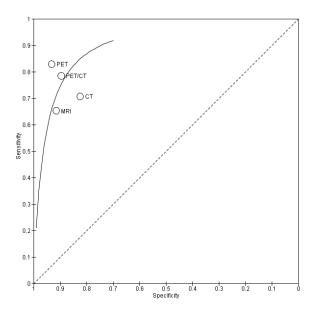


Figure 27: ROC Curve- Cumulative values for Lung cancer

The above ROC curve for lung cancer shows PET has outperformed with higher pooled sensitivity (0.83 [95% CI: 0.79, 0.86] and specificity (0.93 [95% CI: 0.91, 0.95] when compared to MRI, PET/ CT and CT.

Conclusion

This meta-analysis evaluated the published literature for which oncological conditions PET /CT is likely to be shown to be diagnostically accurate compared to other available diagnostic modalities PET, CT and MRI on five different cancers cervical, breast, head and neck, gastric and lung cancer. Diagnosis and detection of different cancers by PET, PET/CT, CT and MRI varies based on the region, recurrence and different stages of cancer. The forest plot was plotted for all five different cancers with a total of 345 studies and their sensitivity and specificity was calculated. The pooled data for the cervical cancer with a sensitivity and specificity of CT 0.62 (0.57, 0.67), 0.92 (0.57, 0.67), MRI 0.52 (0.49,0.55), 0.96 (0.95, 0.96) PET 0.90 (0.86,0.93) 0.93(0.91, 0.94) and PET/CT 0.65(0.62, 0.68) 0.97(0.97,0.98) in detecting LN metastases cervical cancer Tumor staging like IA, IB II A, II B, III A and IV A in cervical cancer. The pooled data for the Breast cancer with a sensitivity and specificity of CT 0.87 (0.85, 0.89), 0.35 (0.33, 0.38) MRI 0.97 (0.94, 0.98), 0.88(0.84, 0.91) PET 0.89 (0.86,0.90) 0.91(0.89, 0.93) and PET/CT 0.86(0.83, 0.88) 0.91(0.89, 0.93) in detecting local recurrences, lesion basis, distant metastases and breast lesions in breast cancer. The pooled data for the head and neck cancer with a sensitivity and specificity of CT 0.81(0.77,0.85), 0.72(0.70, 0.74) MRI 0.77(0.74,0.79), 0.78(0.77,0.79) PET 0.20 (0.16, 0.25) 0.94(0.92, 0.96) and PET/CT 0.84(0.82,0.86) 0.88(0.86,0.89) in detecting lymph node metastasis, detection of recurrence in patients and detecting neck levels I, II, and III with head and neck cancer. The pooled data for the gastric cancer with a sensitivity and specificity of CT 0.77(0.71,0.82), 0.95(0.93,0.97) MRI 0.84(0.73,0.93), 0.850.78,0.91() PET 0.41(0.25,0.58) 0.96(0.92,0.99) and PET/CT 0.85(0.77,0.91) 0.95 (0.90, 0.98) in detecting recurrent gastric cancer and peritoneal metastases in gastric cancer. The pooled data for the lung cancer with a sensitivity and specificity of CT 0.71 (0.66, 0.75), 0.82 (0.80,0.85) MRI 0.65(0.59,0.71), 0.91(0.89,0.94) PET 0.83 (0.79, 0.86) 0.93 (0.91 0.95) and PET/CT 0.78(0.77, 0.80) 0.90(0.89, 0.90) in detecting mediastinal lymph node Metastases, detecting stage III b, local T and N stage, M-stage lung cancer, solitary pulmonary nodule in lung cancer. These findings have clinical implication in terms of providing useful information not only to radiologists in interpreting images but also choosing the imaging modality for the management of suspected cancer patients.

Chapter – III

Cost effectiveness model

Cancer is emerging as a serious public health concern in India as a repercussion of the continuous demographic and epidemiological shift. According to the research, cancer is predominantly reported among the elderly, as well as females of reproductive age. Cancer treatment is one of the highest out-of-pocket costs of any disease. The average out-of-pocket cost for inpatient treatment in private hospitals is almost three times that of public facilities. Furthermore, around 40% of cancer hospitalization cases are financed primarily by borrowings, asset sales, and contributions from friends and family. The spiraling expense of cancer detection and treatment has placed a significant financial strain on afflicted families. In this study, we compare PET/CT versus CT to evaluate the cost effectiveness diagnostic modality to diagnose the top five cancers in India.

Objectives:

The objective of this economic evaluation is to evaluate the cost effectiveness of diagnosis of top five cancer in India with PET/CT compared to CT.

PICO Components

P - **Population:** Patients with high risk for diagnosing with breast cancer, lung cancer, oral cancer, gastric cancer and cervical cancer.

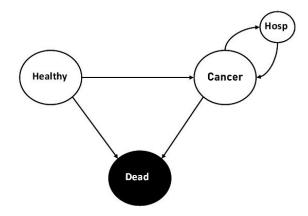
I - Intervention: PET/CT as diagnostic tool

C - Comparator: Computed Tomography (CT)

O - Outcome: Incremental costs, Incremental QALY, Incremental cost effectiveness ratio (ICER)

Time Horizon: Lifetime

Perspective: Societal Perspective


Methods

The cost effectiveness analysis (CEA) specifically aims to compare and analyze cost and health related ramifications of different modalities/interventions together. It serves as a tool for assessment of the value of new and existing medical technologies, their healthcare benefits concerning the incremental costs. Cost effective analysis paves the way for priority setting and the necessary earmarking of healthcare interventions.

A cost-effectiveness analysis was carried out to evaluate the cost-effectiveness of PET/CT vs CT as a diagnostics modality in patients with high risk of top five cancers in India namely, Breast cancer, Lung cancer, Oral cancer, Gastric cancer and Cervical cancer. Cost and Quality Adjusted Life Years (QALYs) were chosen as outcomes and individuals

with high risk aged between 30 and 80 are considered to be eligible for diagnosis. A deterministic and probabilistic Markov model was developed with a cohort of 1,000 patients. We chose a cycle length of one year and ran the model for 50 cycles (i.e., 50 years). Cost effectiveness of PET/CT was assessed from societal perspective with time horizon of 5 years, 10 years and lifetime. Direct medical cost, Direct Non-Medical cost and Indirect cost were calculated and depicted as mean along with its standard error and distribution type. Costs are presented in IN Rupees. The costs and Quality Adjusted Life Years (QALYs) were discounted by 3% per year.

Design of the model:

Since cancer is a non-communicable disease, we used a cohort-based Markov model. Figure 28 illustrates the natural history component of our model with three states: healthy, cancer stage with hospitalization and death.

Cancer diagnosis requires a thorough physical examination and history assessment along with diagnostic testing. Diagnostic test could be done in an invasive (blood tests, biopsy, etc.) or a non-invasive way (CT or PET/CT). A PET/CT or CT scan can show cross section of your bones, organs, and soft tissues more distinct than an x-ray would.

The model, and its calculations were performed in Microsoft Excel. Data for cost effectiveness analysis were derived from primary data and literature. In circumstances of lack of data availability, an expert's opinion was taken into consideration.

Quantifying the model's parameters

The data used for the model and their sources are shown in Table 1. PUBMED, GOOGLE SCHOLAR and WEB OF SCIENCE were used to identify HTA's, Economic evaluation and costing data relevant to India. When relevant data were unattainable in the published literature or datasets, we considered the opinion of experts. In this model we incorporated hospitalization cost, physician consultation fees, cost of scan with consumables, cost of the device per patient, room rent per day, productivity loss of patients due to early death caused by cancer, doctor salary per patients, nurse salary per patient and technical staff salary per patient. Foreign exchange rate was used for conversion of foreign currency to IN Rupees and local costs were adjusted as per local inflation rates. For natural history component of our model, we used incidence rates and mortality rates extracted from literature.

Several probabilities like Probability of dying healthy (natural death), Probability of developing cancer, Probability of hospitalization with cancer and Probability of dying due to cancer, which were calculated from incidence rates and the mortality rates were incorporated in this model.

We first extracted age-specific cancer incidence data for all of India's top five cancers, after which we calculated the percentage of incidence by age followed by, calculating the cumulative probabilities utilizing age and incidence percentage. The probability of dying from cancer was calculated using WHO cancer death rates. We considered the odds of developing cancer as a reference for the probability of hospitalization with cancer. Only when the cancer has progressed to the third or fourth stage, or when the patient reaches the age of 50, will the patient be admitted to the hospital. Weighted average method was done to average five probabilities into one after assessing the probabilities for all cancer (Annexure 1). The gamma distribution was adopted as the input parameter for all costs and length of stay (LOS). In contrast, beta and normal distributions were used for utility weights and hazardous ratio, respectively.

We first extracted the age wise cancer incidence data for all the top five cancers in India. Which was then followed by calculating the percentage of incidence age wise. Later on, we estimated the cumulative probabilities based on the age and the incidence percentage. Similarly, Probability of dying due to cancer was estimated using the age wise cancer mortality rates extracted from WHO. For Probability of hospitalization with cancer we used the probabilities of developing cancer as reference. After estimating the probabilities for all the cancers, we used weighted average method to average five probabilities into one probability. (Annexure 1) Gamma distribution was used as the input parameter for all the costs and length of stay (LOS), beta distribution for utility weights were used and for hazard ratios the input parameter used was normal.

	· · · · ·			6: Model Ir	put Param			
	Model Value	Mean	Standar d Error	Alpha	Beta	Distributio n Type	Formula	Source
			PET/CT			<u> </u>		
			Direct Cost					
Diagnostic Cost								
Device cost/patient	2348.00	2348	234.8	100	23.48	Gamma	2484.60	Primary da
Consultation fees	150.00	150	15	100	1.5	Gamma	119.91	Central Government Heal Scheme (CGH
PET/CT scan with FDG	8777.00	8777	877.7	100	87.77	Gamma	8957.97	Primary da
Technical staff salary/patient/day	30.00	30	3	100	0.3	Gamma	32.03	Cost Database, PGIME
Total diagnostic cost PET/CT	11305.00	11305	1130.5	100	113.05	Gamma	12559.00	
Hospitalization cost								
Doctor salary/patient/day	100.00	100	10	100	1	Gamma	90.39	Cost Database, PGIMI
Nurse salary/patient/day	50.00	50	5	100	0.5	Gamma	51.26	Cost Database, PGIMI
Room with bed/day	4000.00	4000	400	100	40	Gamma	4024.83	Central Government Hea Scheme (CGH
Total hosp for LOS PET/CT	4150.00	4150	415	100	41.5	Gamma	4503.32	
		I	ndirect Cost					
							•	

Productivity lost due to								
early death	ļ			T			1	
Daily wage lost	460.00	460	23	400	1.15	Gamma	469.14	tradingeconomics.co
Total Indirect cost	460.00	460	23	400	1.15	Gamma	446.08	
			СТ					
			Direct cost					
Consultation and Diagnostic cost								
Device cost/patient	171.00	171	17.1	100	1.71	Gamma	142.81	Primary Da
Consultation fees	150.00	150	15	100	1.5	Gamma	141.44	Central Government Hea Scheme (CGH
CT Scan with Contrast	2200.00	2200	220	100	22	Gamma	2162.99	Central Government Hea Scheme (CGH Primary da
Technical staff salary/patient/day	30.00	30	3	100	0.3	Gamma	30.23	Cost Database, PGIMI
Total diagnostic cost CT	2551.00	2551	255.1	100	25.51	Gamma	2168.66	
Hospitalization cost								
Doctor salary/patient/day	100.00	100	10	100	1	Gamma	115.91	Cost Database, PGIMI
Nurse salary/patient/day	50.00	50	5	100	0.5	Gamma	46.90	Cost Database, PGIM
Room with bed/day	4000.00	4000	400	100	40	Gamma	4468.56	Central Government Hea Scheme (CGH
Total hosp for LOS CT	4150.00	4150	415	100	41.5	Gamma	3611.31	
	<u> </u>	Ι	ndirect Cost					
Productivity lost due to early death]							
Daily wage lost	460.00	460	23	400	1.15	Gamma	453.69	tradingeconomics.co
Total Indirect cost	460.00	460	23	400	1.15	Gamma	469.89	
Mean annual wage	140000.0 0	140000	7000	400	350	Gamma	126496.55	Ministry of Labour a Employm
Length of stay	2.00	2	0.1	400	0.005	Gamma	1.96	HTA on PET/0 National Health Syste Resource Cen
utility healthy CT	0.85	0.85	0.085	14.15	2.50	Beta	0.76	HTA on PET/0 National Health Syste Resource Cen
utility disease CT	0.50	0.5	0.05	49.50	49.50	Beta	0.46	HTA on PET/0 National Health Syste Resource Cen
utility hosp CT	0.20	0.2	0.02	79.80	319.20	Beta	0.17	HTA on PET/ National Health Syste Resource Cen
Diagnostic Proportion	0.10	0.1	0.01	89.90	809.10	Beta	0.11	
Utility healthy	0.95	0.95	0.095	4.05	0.21	Beta	1.00	HTA on PET/ National Health Syste Resource Cen
Other incarting			0.06	39.40	26.27	Beta	0.59	HTA on PET/ National Health Syste Resource Cen
Utility disease	0.60	0.6	0.00					
	0.60	0.6	0.02	79.80	319.20	Beta	0.23	HTA on PET/ National Health Syste
Utility disease				79.80	319.20	Beta	0.23	HTA on PET/0 National Health Syster Resource Cen

A cost-effectiveness study yields QALYs (Quality Adjusted Life Years), which represent both the quality and quantity of life linked with various health issues. QALYs are calculated using the length of life and quality of life, or utility ratings, for each health condition. The utilities are scored from 0 to 1, 0 indicating death and 1 indicating perfect health.

Incremental cost effectiveness ratio (ICER) is the difference in cost between two possible interventions (PET/CT and CT), divided by the difference in their effect.

$$ICER = C_{PET/CT \ screening} - C_{No \ screening} / \ E_{PET/CT \ screening} - E_{No \ Screening}$$

-where, C is cost and E is the effectiveness.

The GDP per capita was believed to be the cost-effectiveness threshold. To estimate the likelihood of PET/CT's potential to be a cost-effective screening tool, various degrees of willingness to pay were incorporated in the model.

Sensitivity Analysis:

Sensitivity analysis is performed to assess the input parameter's uncertainty and robustness of a model. For a probabilistic sensitivity analysis (PSA), several input model parameters from each range are chosen randomly and incorporated in the model to generate outcomes (cost and health result). To account for the heterogeneity, a Monte Carlo Stimulation with 1,000 repetitions were also carried out. A cost-effectiveness plane was plotted incorporating the PSA results (Figure 3) The proportion of outcomes that fall favorably (i.e., are regarded cost-effective) in respect to a specific cost-effectiveness threshold is a major output of a PSA. A cost-effectiveness acceptability curve might be used to illustrate this.

Sensitivity analysis were conducted examine model sensitivity to different parameters. A number of input model parameters is randomly sampled from each range in a probabilistic sensitivity analysis (PSA), and the model is 'run' to create outputs (cost and health result) that are saved. In addition, a Monte Carlo Simulation with 1,000 repetitions was performed to account for heterogeneity. The results obtained from PSA were plotted on the cost-effectiveness plane. The proportion of outcomes that fall favorably (cost-effective) in respect to a specific cost-effectiveness threshold is a major output of a PSA. A cost-effectiveness acceptability curve might be used to illustrate this. PSA findings were presented using a scatter plot of incremental cost effectiveness and cost effectiveness acceptability curves.

Net monetary benefit:

NMB or net monetary benefit, is a summary statistic that indicates the worth of an intervention in monetary terms. This is calculated when a willingness to pay threshold for a unit benefit, in this case QALY, is known.

The use of NMB scales both health outcomes and resource consumption to costs, allowing comparisons to be conducted without the need of ratios (as in ICERs).

(Incremental Benefit x Threshold) - Incremental cost

The difference in NMB between alternative interventions is measured by incremental NMB, with a positive incremental NMB indicating that the intervention is more cost-effective than the alternative at the specified willingness-to-pay level.

Threshold Analysis:

The threshold for India was calculated to be ₹1,46,000. If the ICER value falls in quadrant 1 and quadrant 3, we accept or reject the intervention based on the threshold value. If the ICER is less than the threshold then we accept, else reject.

Whereas, if the ICER value falls on quadrant 4 we accept (Dominates) the intervention as its less costly and more effective and if it falls on quadrant 2, we completely reject (Dominated) as its more expensive and the outcomes is less. Since some of the PSA values are on the 2nd and 4th quadrant, WTP analysis was conducted to understand the exact cost where PET/CT is cost-effective as diagnostic modality.

Results:

Cost – effectiveness results:

Base case results:

Table 1 displays the base-case results of model analyses, which revealed that PET/CT as diagnostic modality gains 4.19, 6.42 and 6.99 QALYs, in the time horizon of 5 years, 10 years and lifetime respectively. The ICER for PET/CT compared to CT were 617; 1,783 and 2,337 respectively for different time horizons.

Time Horizon	Diagnostic Techniques	QALYs	Cost	ICER
5 years	PET/CT	4.19	₹ 8,36,904	617
	СТ	3.74	₹ 8,36,625	
10 years	PET/CT	6.42	₹ 59,30,657	1,783
	СТ	5.69	₹ 59,29,359	
Lifetime	PET/CT	6.99	₹ 3,03,89,268	2,337
	СТ	6.18	₹ 3,03,87,377	

PSA Results:

Figure 2 represents the results obtained from probabilistic model. A Monte Carlo simulation of 1000 iteration was performed to deal with the uncertainty of the variables that affect the outcomes. The ICER values obtained from PSA are all somewhere close to the base-case lifetime horizon ICER value. From the graph, it is clearly visible QALY gained from PET/CT diagnostic is high compared to that of CT.

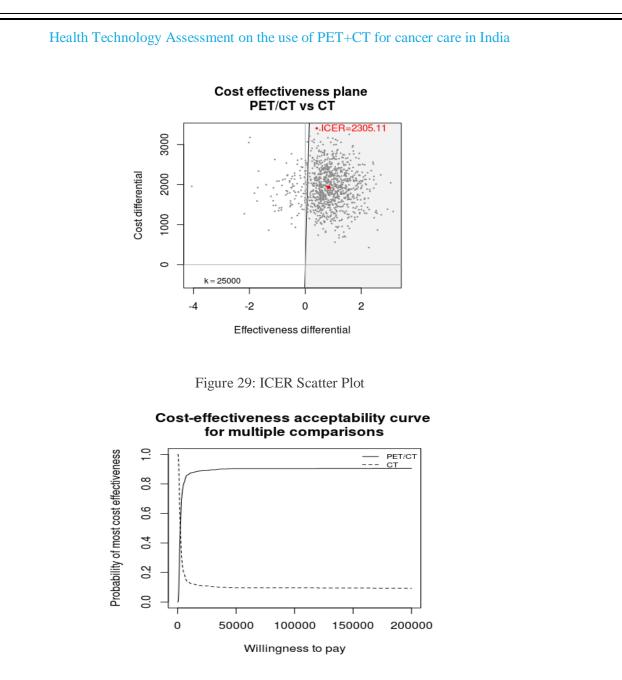
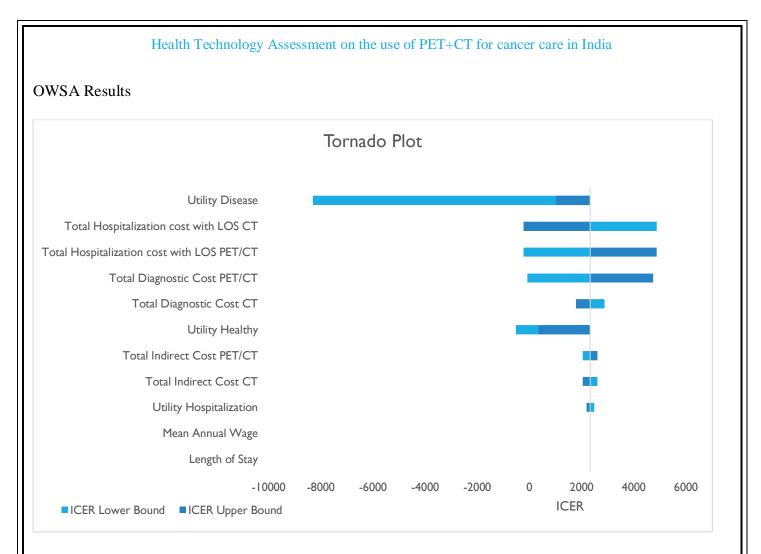



Figure 30: Cost Effectiveness Acceptability Curve

Figure 3 shows the probability of diagnosing with PET/CT being cost effective with respect to willingness to pay. Up to the willingness to pay of \gtrless 9,000, CT is cost-effective. When the willingness to pay is high, patients opt for better interventions that give better outcomes. Here, in our study, when the WTP is greater than 9,000, PET/CT is almost 80% cost effective. When the WTP gets higher the probability of PET/CT being cost effective also increases. The net monetary benefit for diagnosing lung cancer with PET/CT is higher compared to that of CT.

The main result of this study was that diagnosing lung cancer with PET/CT was cost-effective compared to CT among high-risk patients. The ICER values obtained from PSA are all somewhere close to the base-case lifetime horizon ICER value. From the graph, it is clearly visible QALY gained from PET/CT diagnostic is high compared to that of CT. Since the incremental net monetary benefit is higher for diagnosing Lung cancer with PET/CT, it is a cost-effective modality for high-risk patient.

Our one way sensitivity analysis reveals that the uncertainty in the utility of diseased patient, Total hospitalization cost with Length of stay for PET/CT and CT, Total diagnostic cost for PET/CT and CT and utility of health population have the greatest impact on the ICER.

Conclusion

Total cost of establishing PET/ CT scan facility without cyclotron was calculated to be INR 17.08 Cr (USD 2,339,048.75). Proposing more units would cost the government a huge sum of money where there is no data regarding the utilization levels of the existing units. The cost of performing PET/ CT scans can decrease if the number of examinations increase over the time. Various strategies can be adopted in order to cut down the capital and operational cost of setting up the facilities, which in turn can decrease the unit cost of PET/ CT scan. The total cost of setting up of cyclotron facility was calculated to be INR 58.63 Cr (USD 8,026,734.1). This model thus proposes additional 04 Cyclotrons units to meet the current demand via phase wise implementation, which is still very less than that is required.

Besides, there are currently 88 units of PET/ CT in the South zone, of which 13 alone belongs to Kerala. Wherein East, North East and Central zones have less than that of Kerala each. It is concluded from the study that setting up of additional PET/ CT units in Kerala is not suggested, rather focusing on other areas where there is dire need of development in PET/ CT infrastructure would upbring the current scenario in India.

Discussion

Cancer treatment delay is a problem in health systems worldwide. The impact of delay on mortality can now be quantified for prioritisation and modelling. Even a four-week delay of cancer treatment is associated with increased mortality across surgical, systemic treatment, and radiotherapy indications for cancers. Policies focused on minimising system level delays to cancer treatment initiation could improve population level survival outcomes. (379)

India has very limited PET/CT scanners and cyclotrons when the number of cancer cases is taken into account. Approximately 10 lakhs new cancer cases were registered on the year 2018. Uttar Pradesh with population of 19,98,12,341 people had the highest number of newly registered cases, that is 1,57,852, in the year 2018. Currently there are only 279 PET/ CT scanners in India, which is very less than that is required and essential.

There are inequities in the distribution and access to nuclear medicine and diagnostic imaging across the globe. Launched in 2019, the IAEA Medical Imaging and Nuclear Medicine resources database, IMAGINE, presents interactive maps on every country's availability of medical imaging equipment and human resources. According to this database the population served by 1 PET/ CT scanner in High Income Countries (HICs) is approximately 6,01,000, 34,84,000 in Upper Middle-Income Countries (UMICs) and 1,00,00,000 in Lower Middle-Income Countries (LMICs) and 16,66,67,000 in Low Income Countries (LICs).

Addressing the inequities in the distribution and access to the nuclear medicine and diagnostic imaging is still existing as a challenge for the country. If the norms are defined as 1 PET/ CT scanner per 5 lakh population then, we are currently way behind in meeting the demand. We have currently 279 PET/ CT units, and need additional 2224 units to meet the standards. In case of 1 PET/ CT scanner per 10,00,000 population, we would require additional 972 units to meet the norms. Whereas in case of 1 PET/ CT scanner per 1,00,000 population, then we have surplus units in running. Proposing more than 1000 units would cost the government a huge sum of money where there is no data regarding the utilization levels of the existing units. An additional 13 units of PET/CTs and 4 Cyclotrons units can be set up to meet the current demand, which is still very less than that is required.

Factors limiting Growth of PET in India-

Costs & Infrastructure

High operational and capital costs is a challenge to Indian Healthcare system. Limited availability of the radiotracer FDG currently creates high-cost barriers for cancer-care programs integrating PET technology. The costs of FDG (18F-fluorodeoxyglucose), a critical component of PET imaging, vary widely. Much of the difference in cost can be attributed to variable distance from the cyclotron facility to the PET clinic. FDG loses one-half of its activity every two hours (approximately) from the time it is produced. Therefore, facilities that have to purchase FDG from other states have to pay for a large amount of FDG in order to have sufficient radioactivity remaining to perform PET exams by the time it reaches the PET facility. FDG costs are also high because availability in India is low. At present, there are only 20 cyclotrons producing FDG for oncologic PET imaging across India. Because there are so few PET facilities in India, the amounts of FDG produced are relatively small and there is no cost reduction due to large volume production.

Therefore, a well-functioning PET infrastructure in India would require a cyclotron network that makes FDG easily available to PET centers in every state.

Education and Training

The final category of constraints limiting the full adoption of PET in India is the education and training of health care professionals. As there is a shortage of human resource in all areas of nuclear medicine. This demand will increase with growing numbers of PET facilities and cyclotron installations. Deployment and uptake of PET technology is limited by the number of trained, qualified personnel ranging from people to perform synthesis and to formulate and certify radiopharmaceuticals to imaging specialists and cyclotron operators. Additionally, support personnel for regulatory oversight, operations and maintenance, training, and so on are in short supply. Physician groups, cancer patients and the general public are uneducated about the utilization and benefits of PET technology in cancer care. Majority of undergraduate medical students receive anywhere little knowledge of nuclear medicine education. This statistic is higher in other countries. Doctors tend to use PET imaging at the end of the diagnostic pathway, and this may prevent costeffective care. Medical literature suggests that PET imaging can result in substantial healthcare savings if it is used as an initial tool in the diagnostic pathway of an oncology patient, rather than a last resort. It can eliminate the need for further tests or procedures in as many as 90% of cases (390), change treatment strategies in as many as 50% of cases and improve decision-making by physicians in 83% of cases (391-392). Yet many doctors continue to view PET imaging as a diagnostic tool to be used when all other means have failed. Cancer patients and the general public – A lack of knowledge among cancer patients and the general public may also be a limiting factor to the expansion of PET imaging. Approximately, general public at some point may be impacted by cancer through illness or the illness of a family member or friend. Yet very few are aware of the potential benefits of PET in determining the most appropriate management of their cancer. Coordinated policy action at the level of the healthcare system would obviate some of these concerns.

Time for national strategy

Most PET scanners are situated in population-dense cities and it is difficult to justify the cost and operation of a PET scanner in small cities, even though they may serve a large geographic area. Geography also makes it difficult to transport FDG over long distances. Regulation of FDG is viewed as a major hurdle to the efficient use of PET resources. India does not have a national approach or national policies for the use of PET as a clinical tool for cancer care. There has not been a coordinated approach to implementing a national strategy for the focused translation of PET technology from research purposes to the clinical care of cancer (e.g., developing a PET network or developing national PET policies and indications for use). Although we can explore possibilities for the conversion of existing SPECT into PET as SPECT isotope Tc-99m has long shelf life than FDG, moreover we can save huge amount of money as well.

To provide financial assistance to poor patients a new scheme for cancer care has been formulated under Ministry of Health & Family Welfare. The Umbrella Scheme of Rashtriya Arogya Nidhi (RAN) will have three components namely (i) Rashtriya Arogya Nidhi (RAN), (ii) Health Minister's Cancer Patients Fund (HMCPF) and (iii) Scheme for financial assistance for patients suffering from specified rare diseases. Financial assistance under the scheme of Rashtriya Arogya

Nidhi (RAN) for the treatment to the eligible poor population covering PET investigations for cancer and cardiology (393). Even Health Ministers cancer patient fund within RAN for the Cancer Patients is approved plan allocation for National cancer control Programme (NCCP) as mandated in the 11th five-year plan. (394). The financial assistance to the cancer patient up to Rs. 2,00,000/- (Rs. 5,00,000/- in emergency cases), would be processed by the concerned Regional Cancer Canters (RCC) (394). Interestingly! government of India has taken many steps to facilitate health insurance in India. Nevertheless! A visionary approach coupled with a timely strategy based on expected future cancer burden in the country needs to be adopted to address the anticipated increase in PET-CT imaging requirements.

Recommendation

At this time, the early detection of cancer and precursor lesions represents a largely unmet potential to decrease morbidity and mortality from malignancies. We need to focus on cancer awareness, initial detection, diagnosis, and availability and affordability of treatment in all sorts of cancers. Early diagnosed cancers are treatable and cost effective to treat, and the patient goes back to lead a normal routine life. Equal distribution of nuclear medicine facilities, particularly the human resource, and health-care equipment will address the demand of cancer care facilities. As we know, multimodality imaging has been widely adopted by the scientific community as a way to gain a more comprehensive understanding of the effects of diseases and treatments.

The PET–CT revolution has initiated a new way of looking at physiology and morphology simultaneously, and the new class of PET–MR which are radiation free systems are broadening the horizon of opportunities for applications in healthcare. An integrated PET-CT has been documented to have improved image interpretations in 49% of the patients and 30% of the sites. PET-CT have an incremental value in terms of baseline preoperative staging, restaging, and evaluation of suspected recurrence. The studies published in the last decade have shown overwhelming scientific evidence of PET-CT having an accuracy ranging from 84% to 93% in comparison to 63–64% of CT alone. (396-397) PET-CT has had a major impact in an otherwise blind area of detecting unknown primary Tumor where otherwise no single imaging modality was successful. The continued introduction of new detector technologies, hybrid imaging, and advanced algorithms for image reconstruction and analysis we propose an evaluation of the existing SPECT imaging facilities for possible conversion into PET as the only difference is the detector which is possible according to literature. In India at present, we have 194 SPECT facilities, which can be converted into PET by changing a detector. This way we can save huge amount of money making this intervention a cost-effective intervention.

Moreover, in India the public sector accounts for only around 20 percent of the total healthcare expenditure, representing around 1% of the GDP (398). Since healthcare in India is dominated by the private sectors, government can have a PPP (Public Private Partnership) with the private sectors to fulfil the demands by providing treatment and covering almost all the population for good and reasonable price.

PPP's in Healthcare can be classified in the key areas such as:

- Infrastructure development
- Management and Operations

- Capacity building and training
- Financing Mechanism
- IT infrastructure development for Networking and Data Transfer
- Materials Management

One of the main challenges faced in India is the out-of-pocket expenditures, which are very high and covering them through insurance is still low compared to the population.

Discussion on number of PET- CT units-

- States having maximum number of PET-CT units are in Maharashtra-48 States & union territory having only one PET-CT unit Manipur, Tripura, Uttarakhand, Jharkhand, Puducherry.
- States and union territory not even having one PET-CT unit are-Himachal Pradesh, Arunachal Pradesh, Goa, Mizoram, Meghalaya, Nagaland, Sikkim, Andaman & Nicobar Islands, Dadra and Nagar Haveli, Lakshadweep, and Ladakh.
- In Kerala we have 13 PET-CT units and is not suggestive of adding another PET-CT unit for Kerala, rather recommend it for states having higher cancer incidence and lesser PET-CT units.

Public Private Partnership Model for Service Delivery only for PET- CT

- PET-CT diagnostic service can be provided in Public Private Partnership model across India following National Free Diagnostic Scheme (section radiology services).
- It will help to Provide accessible, affordable and quality PET-CT diagnostic service in all public health facilities up to district hospitals. Leading to reduction of direct cost for PET-CT scan causing a remarkable impact on out-of- pocket expenditure by general public.
- Utilizing the capacity of private service providers in supporting government to provide PET-CT scan will lead to strengthening PET-CT diagnostic service network across the country.
- Cost of PET-CT scans are conducted for around Rs 11,000 15,000 in private sector which are suggested to be included free of cost under PMJAY scheme.

Cyclotron

- We suggest cyclotron should be under public sector as -
- If the cost of raw material for PET-CT is maintained the cost for PET-CT scan will also be maintained otherwise if it is under private sector the cost might increase according to market fluctuations.
- Private companies are more interested in installation of PET-CT units as they will get return on investment soon, unlike the case of cyclotron.
- We need to focus on even distribution of cyclotron units across the country, as the shelf life of the radioisotopes used for PET-CT is very less

Limitations

The increasing use of other diagnostic modalities has led to concerns about the potential overutilization of PET. There is a perception that CT and MRI are overused modalities in private sector and utilized in cases when there is little evidence to support their need. Consequently, there are concerns that PET imaging will follow this path, even though PET has a far more restricted number of indications. While it is beyond the scope of this report to evaluate the use of CT and MRI, this perception (or misperception) suggests it may be time for governments to develop a systematic approach to assess the proper utilization of CT and MRI, rather than limit the expansion, and utilization, of PET technology in clinical care. Governments should consider the merits of PET technology based on its own capabilities, not on the possible overuse of other technologies.

Appendix-1 PET/CT- Cervical cancer

.no Study - PET/CT-Cervical cancer	ТР	FP	FN	ΤN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1 Belhocine 2002 ²⁹	19	8	3	187	0.7	0.98	21	0.14	217	94.9
2 Choi 2006 ³⁰	19	9	14	112	0.67	0.88	7.74	0.45	154	85
3 Chung 2009 ³¹	7	1	10	16	0.87	0.61	7	0.6	34	48.5
4 Chung 2010 ³²	8	9	20	46	0.47	0.69	1.74	0.85	83	65
5 Crivellaro 2012 33	4	2	11	52	0.66	0.82	7.2	0.76	69	81.1
6 Havrilesky 2003 ³⁴	12	2	2	13	0.85	0.86	6.42	0.16	29	86.2
7 Kim 2009 ³⁵	26	30	33	464	0.46	0.93	7.25	0.59	553	88.6
8 Kitajima 2009 ³⁶	12	1	11	1198	0.92	0.99	625.5	0.47	1222	99
9 Kitajima 2012 ³⁷	14	6	22	158	0.7	0.87	10.6	0.63	200	86
10 Lin 2003 ³⁸	12	2	2	34	0.85	0.94	15.4	0.15	50	92
11 Loft 2007 ³⁹	21	7	1	50	0.75	0.98	7.77	0.05	79	89.8
12 Lv 2014 ⁴⁰	61	17	6	1079	0.78	0.99	58.6	0.09	1163	98
13 Narayan 2001 ⁴¹	10	1	2	11	0.9	0.84	10	0.18	24	87.5
14 Reinhard 2001 ⁴²	17	2	4	269	0.89	0.98	109.6	0.19	292	95.8
15 Roh 2005 ⁴³	14	12	23	385	0.53	0.94	12.5	0.64	434	91.9
16 Sandvik 2011 ⁴⁴	1	3	4	28	0.25	0.87	2.06	0.88	36	80.5
17 Signorelli 2011 ⁴⁵	10	4	30	862	0.71	0.96	54.1			
18 Sironi 2006 ⁴⁶	13	3	5	1060	0.81	0.99	255.9	0.27	1081	99.2
19 Stecco 2016 ⁴⁷	7	3	1	16			5.54			
20 Wright 2005 ⁴⁸	12	8	14	84	0.6	0.85	5.3	0.58	118	
21 Xu 2016 ⁴⁹	19	8		20						
22 Yeh 2002 ⁵⁰	10	2		29			14	0.09	42	
23 Yildirim 2008 ⁵¹	2	2		10	0.5		3	0.6	16	
24 LV K 2014 ⁵²	34	7					7.57			
25 Narayan K 2001 ⁵³	4	1					9.71			
26 Park W 2005 ⁵⁴	6	0		22			0			
27 Park 2005 ⁵⁴	9	0		50			0			
28 Reinhard MJ 2001 42	10	0								
29 Kim SK 2009 ³⁵	14	14		35						
30 Choi HJ 2006 ³⁰	10	4					1.73			
31 Loft A 2007 ³⁹	15	1					10.5			
32 Ma 2003 ⁵⁵	38	0		66			0			
33 Signorelli M 2011 ⁴⁵	9	4		127						
34 Roh JW 2005 ⁴³	9	0					0			
35 Sironi S 2006 ⁴⁶	11	1					23.4			
36 Wright J 2005 ⁴⁸	1	1					10.25			
37 Wright D 2005 ⁴⁸	2	1					10.20	0.6		
37 Wright DD 2005 48	10	4					5.26			
39 Stecco A 2016 47	26	17					7.39			
40 Rose 1999 ⁵⁶	11	0					0			
40 Kose 1999 41 Kitajima K 2009 ³⁶	6	3					5.5			
42 Kitajima M 2009 ³⁶	11	2					182.7			
		0					182.7			
43 Kitajima 2008 ⁵⁷	10 6	0								
44 Amit 2006 ⁵⁸ 45 Chung 2007 ⁵⁹	28	4					4.74			
0	_									
46 Grisaru 2004 ⁶⁰	10	0					12.4			
47 Kitajima S 2008 ⁵⁷	23	2					12.4			
48 Mittra 2009 ⁶¹	22	2					3.34			
49 Sironi 2007 ⁶² Cumulative	5	0 210		6 7944			0 25.6			

PET- Cervical cancer

S.no	Study- PET-Cervical cancer	ТР	FP	FN	ΤN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1	. Chang 2014 ⁶³	17	2	1	7	0.89	0.87	4.25	0.07	27	88.8
2	Kitajima 2008 ⁶⁴	20	6	5	21	0.76	0.8	3.6	0.25	52	78.8
3	Vander 2003 ⁶⁵	23	1	2	13	0.95	0.86	12.8	0.08	39	92.3
4	Havrilesky 2003 34	12	2	2	3	0.85	0.6	2.14	0.23	19	78.9
5	Ryu 2003 ⁶⁶	28	52	3	166	0.35	0.98	3.78	0.12	249	77.9
e	Sakurai 2006 ⁶⁷	43	3	4	4	0.93	0.5	2.13	0.14	54	88.8
7	' Lai 2014 ⁶⁸	61	6	6	327	0.91	0.98	50.5	0.09	400	97
8	Yen 2004 ⁶⁹	84	8	10	448	0.91	0.97	50.9	0.1	550	96.7
	Cumulative	288	80	33	989	0.78	0.96	11.9	0.11	1390	91.80%

CT- Cervical cancer

S.no	Study-CT-Cervical cancer	ТР	FP	FN	ΤN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1	Bandy 1985 ⁷⁰	9	3	3	29	0.75	0.9	8	0.27	44	86.3
	Bellomi 2005 ⁷¹	31	30	17	418	0.58	0.96	9.6	0.37	496	90.5
	Camilien 1988 ⁷²	3	1	9	38	0.75	0.8	9.75	0.76	51	80.3
4	Chu 1996 ⁷³	4	1	6	17	0.8	0.73	7.2	0.63	28	75
	Engelshove 1984 ⁷⁴	3	4	1	2	0.42	0.66	1.12	0.75	10	50
	Heller 1990 ⁷⁵	31	8	30	184	0.79	0.85	12.1	0.51	253	84.9
7	Heron 2002 ⁷⁶	24	2	2	36	0.92	0.94	17.5	0.08	64	93.7
8	Hertel 2002 77	3	8	17	47	0.3	0.84	1.96	0.85	67	76.1
9	Kim 1993 ⁷⁸	7	11	22	158	0.38	0.87	3.7	0.81	198	83.3
10	Matsukam 1989 ⁷⁹	5	2	2	61	0.71	0.96	22.5	0.29	70	94.2
11	Subak 1995 ⁸⁰	3	3	2	29	0.5	0.93	6.4	0.4	37	86.4
	Villasanta 1983 ⁸¹	10	4	3	25	0.71	0.89	5.57	0.26	42	83.3
	Walsh 1980 ⁸²	12	3	3	7	0.8	0.7	2.66	0.28	25	76
	William 2009 ⁸³	10	2	1	7	0.83	0.87	4	0.11	20	85
	Wlash 2005 ⁸⁴	12	3	3	7	0.8	0.7	2.66	0.28	25	76
16	Yang 2000 ⁸⁵	11	2	6	57	0.78	0.9	12.9	0.35	77	88.3
17	Park 2000 ⁸⁶	14	3	4	15	0.82	0.78	4.66	0.26	36	80.5
18	Walsh 1981 ⁸⁷	27	2	1	7	0.93	0.87	4.33	0.04	37	91.8
19	Grumbine 1981 ⁸⁸	0	1	6	17	0	0.73	0	1.05	24	70.8
20	Walsh JW 1981 ⁸⁷	11	2	2	0	0.84	0	0.84	0	15	73.3
21	Brenner 1982 ⁸⁹	4	0	2	6	1	1.75	0	0.33	12	83.3
	Brenner H 1982 ⁸⁹	4	1	2	13	0.8	0.86	9.33	0.35	20	85
	Cumulative	238	96	144	1180	0.72	0.88	8.24	0.4	1721	82%

MRI- Cervical cancer

S.no	Study- MRI-Cervical cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1	Bellomi 2005 ⁹⁰	35	31	13	417	0.53	0.96	10.5	0.2	496	
	Choi 2004 ⁹¹	8	14	6	198	0.36	0.97	8.6	0.4	226	91.1
	Choi 2006 ⁹²	4	5	9	4	0.44	0.3	0.55	1.55	22	36.3
	Chung 2007 ⁹³	24	10	6	59	0.7	0.9	5.5	0.2	99	53.5
	Chung 2010 94	18	17	10	38	0.51	0.79	2.07	0.51	83	67.4
	Grecco 1989 ⁹⁵	3	6	5	32	0.33	0.86	2.37	0.74	44	79.5
	Hawighost 1998 ⁹⁶	13	3	6	11	0.81	0.64	3.19	0.4	33	72.7
	Hawnaur 1994 ⁹⁷	12	4	4	29	0.75	0.87	6.18	0.28	49	83.6
	Hertel 2002 98	3	7	4	48	0.3	0.92	3.36	0.65	62	82.2
	Hricak 1988 ⁹⁹	9	2	2	44	0.81	0.95	18.8	0.19	57	92.9
	Janus 1989 ¹⁰⁰	3	2	1	16	0.6	0.94	6.75	0.28	22	86.3
	Kim 1990 ¹⁰¹	3	1	12	44	0.75	0.78	9	0.81	60	78.3
13	Kim 1993 ¹⁰²	7	2	22	167	0.77	0.88	20.3	0.76	198	87.8
14	Kim 1994 ¹⁰³	23	2	14	223	0.92	0.94	69.9	0.3	262	93.8
15	Kim 2009 ³⁵	17	16	13	33	0.51	0.71	1.73	0.64	79	63.2
	Lin 2008 ¹⁰⁴	4	22	22	990	0.15	0.97	7.07	0.86	1038	95.7
	Lv 2014 ⁴⁰	15	8	19	45	0.65	0.7	2.9	0.6	87	68.9
	Park 2005 ⁵⁴	8	6	6	16	0.57	0.72	2.09	0.5	36	66.6
	Reinhard 2001 ⁴²	8	4	3	20	0.66	0.86	4.36	0.32	35	80
	Sahdev 2007 ¹⁰⁵	12	15	32	1427	0.44	0.97	26.2	0.73	1486	96.8
	Sheu 2001 ¹⁰⁶	9	4	2	26	0.69	0.92	6.13	0.2	41	85.3
	Stecco 2016 47	7	3	1	16	0.7	0.94	5.54	0.14	27	85.1
	Subak 1995 ⁸⁰	8	5	5	53	0.61	0.91	7.13	0.42	71	85.9
	Yang 2000 ¹⁰⁷	12	6	5	53	0.66	0.91	6.94	0.32	76	85.5
25	Yu 1998 ¹⁰⁸	9	7	5	73	0.56	0.93	7.3	0.39	94	87.2
26	Hertel H 2002 98	0	1	6	60	0	0.9	0	1	67	89.5
	Chung HH 2007 93	30	44	66	693	0.4	0.91	5.23	0.73	833	86.7
	Greco 1989 ⁹⁵	3	6	5	32	0.33	0.86	2.37	0.74	46	69.5
29	Lv K 2014 ⁴⁰	25	16	42	1080	0.6	0.96	25.5	0.63	1163	95
	Narayanan 2001 53	6	0	6	12	1	0.66	0	0.5	24	75
	Narayanan K 2001 ⁵³	8	6	6	16	0.57	0.72	2.09	0.58	36	66.6
	Park W 2005 54	12	10	10	40	0.54	0.8	2.72	0.56	72	72.2
33	Reinhard MJ 2001 42	14	8	7	263	0.63	0.97	22.5	0.34	292	94.8
	Sahdev A 2007 ¹⁰⁵	7	11	12	120	0.38	0.9	4.38	0.68	150	84.6
	Waggen spack 1988 ¹⁰⁹	3	0	0	17	1	1	0	0	20	100
36	Kim SK 2009 ³⁵	32	38	27	456	0.45	0.94	7.05	0.49	553	88.2
	Choi k 2006 ³⁰	10	9	23	112	0.52	0.82	4.07	0.75	154	79.2
38	Stecco A 2016 47	33	15	4	164	0.68	0.97	10.64	0.11	216	91.2
	Choi HJ 2006 ⁹¹	12	24	3	346	0.33	0.99	12.3	0.21	385	92.9
40	Choi J 2006 ⁹¹	15	47	17	1830	0.24	0.99	18.7	0.54	1909	96.6
41	Lin G 2008 ¹⁰⁴	3	4	9	284	0.42	0.96	18	0.76	300	95.6
42	Lin Y 2008 ¹⁰⁴	2	2	5	41	0.5	0.89	6.14	0.74	50	86
43	Hatano 1999 ¹¹⁰	1	0	0	34	1	1	0	0	35	100
44	Weber 1995 ¹¹¹	18	1	3	15	0.94	0.83	13.71	0.15	37	89.1
	Williams 1989 ⁸³	9	2	2	7	0.81	0.77	3.68	0.23	20	80
	Cumulative	517	446	480	9704	0.54	0.95	11.8	0.5	11145	92%

Appendix-II

1. PET/CT-Breast cancer

S.no	STUDY - PET/CT Breast cancer	ТР	FP	FN	ΤN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Chae 2009 ¹⁵⁹	16	12	17	63	0.57	0.78	3.03	0.61	108	21.2
2	Champion 2011 160	175	6	12	35	0.96	0.74	6.39	0.07	228	92.1
3	Chang 2014 ¹⁶¹	35	4	5	27	0.89	0.84	6.78	0.14	71	87.3
4	Cochet 2014 ¹⁶²	39	2	3	19	0.95	0.86	9.75	0.07	63	92
5	Dirisamer 2010 ¹⁶³	39	0	3	10	1	0.76	0	0.07	52	94.2
6	Filippi 2011 ¹⁶⁴	33	1	5	7	0.97	0.58	6.94	0.15	46	86.9
7	Fueger 2005 ¹⁶⁵	31	4	2	21	0.88	0.91	5.87	0.07	58	89.6
8	Fuster 2008 ¹²³	14	0	6	32	1	0.84	0	0.3	52	88.4
9	Gallowitsch 2003 124	33	5	1	23	0.86	0.95	5.43	0.03	62	90.3
10	Goerres 2003 ¹⁶⁶	14	5	0	13	0.73	1	3.6	0	32	84.3
11	Grassetto 2011 167	37	0	3	49	1	0.94	0	0.07	89	100
12	Haug 2007 ¹²⁸	24	1	1	8	0.96	0.88	8.64	0.04	34	94.1
13	Kamel 2003 ¹⁶⁸	26	1	0	30	0.96	1	31	0	57	98.6
14	Kim 2009 ¹⁶⁹	27	0	8	102	1	0.9	0	0.2	137	94.1
15	Lonneux 2000 ¹⁷⁰	31	3	2	3	0.91	0.6	1.87	0.12	39	87.1
16	Manohar 2012 ¹⁷¹	44	4	1	23	0.91	0.95	6.6	0.02	72	93
17	Moon 1998 ¹⁷²	22	7	2	26	0.75	0.92	4.32	0.1	57	84.2
18	Murakami 2012 ¹⁷³	24	2	1	20	0.92	0.95	10.56	0.04	47	93.6
19	Palomar 2010 ¹⁷⁴	29	5	4	32	0.85	0.88	6.5	0.14	70	87.1
20	Schmidt 2008 ¹⁷⁵	170	8	16	69	0.95	0.81	8.79	0.09	263	90.8
21	Veit 2007 ¹⁷⁶	19	4	0	21	0.82	1	6.25	0	44	90.9
22	Veronesi 2007 ¹³⁷	38	5	65	128	0.88	0.66	9.81	0.65	236	70.3
23	Wolfort 2006 ¹³⁹	13	0	3	7	1	0.7	0	0.18	23	86.9
24	Mohammed 2020	16	0	2	42	1	0.95	0	0.11	60	96
25	Mohammed S 2020	20	0	2	8	1	0.85	0	0.09	30	93.3
	Cumulative	969	79	164	818	0.92	0.83	9.71	0.15	2030	88

2. PET-Breast cancer

S.no	STUDY - PET Breast cancer	TP	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Abe 2005 ¹⁷⁷	14	1	0	29	0.93	1	3	0	44	97.7
	Aide 2007 ¹⁷⁸	21	2	7	5	0.91	0.41	2.62	0.35	35	74.2
3	Avril 1996 ¹¹⁹	19	0	5	17	1	0.77	0	0.2	41	87.8
4	Barranger 2003 ¹⁷⁹	3	0	12	17	1	0.58	0	0.8	32	62.5
5	Bender 1997 ¹⁴⁴	13	2	1	58	0.86	0.98	27.8	0.07	74	95.5
6	Dehdashti 1995 ¹⁸⁰	17	0	2	2	1	0.5	0	0.1	21	90.4
7	Dirisamer 2010 ¹⁶³	34	0	8	10	1	0.55	0	0.19	52	84.6
8	Eubank 2004 ¹²²	16	4	1	40	0.8	0.97	10.35	0.06	61	91.8
9	Fehr 2004 ¹⁸¹	2	1	8	13	0.66	0.61	2.8	0.86	24	62.5
10	Gallowitsch 2003 124	33	5	1	23	0.86	0.95	5.43	0.03	62	90.3
11	Gilrendo 2006 ¹²⁵	120	2	22	131	0.98	0.85	56.1	0.15	275	91.2
12	Goerres 2003 166	14	5	0	13	0.73	1	3.6	0	32	84.3
13	Greco 2001 ¹⁸²	68	13	4	82	0.83	0.95	6.9	0.06	167	89.8
14	Guillemard 2006 ¹⁸³	7	0	1	6	1	0.85	0	0.12	14	92.8
15	Guller 2002 ¹²⁶	6	1	8	16	0.85	0.66	7.28	0.6	31	70.9
16	Hathaway 1999 ¹⁴⁸	6	0	0	1	1	1	0	0	7	100
17	Haug 2007 ¹²⁷	23	1	3	7	0.95	0.7	7.07	0.13	34	88.2
18	Inoue 2004 ¹⁸⁴	21	2	14	44	0.91	0.75	13.8	0.41	81	80.2
19	Kamel 2003 ¹⁶⁸	25	2	2	23	0.92	0.92	11.5	0.08	52	92.3
20	Kim 2001 ¹⁸⁵	16	2	1	8	0.88	0.88	4.7	0.07	27	88.8
21	Lin 2002 ¹⁸⁶	4	1	0	31	0.8	1	31	0	36	97.2
22	Moon 1998 ¹⁷²	27	6	2	22	0.81	0.91	4.34	0.08	57	85.9
23	Noh 1998 ¹⁸⁷	14	0	1	12	1	0.9	0	0.06	27	96.2
24	Ohta 2001 ¹⁸⁸	7	1	2	42	0.87	0.95	33.4	0.22	52	94.2
25	Piperkova 2007 ¹³²	221	2	5	29	0.99	0.85	15.1	0.02	257	97.2
26	Raileanu 2004 ¹⁸⁹	6	0	1	13	1	0.92	0	1.42	20	95
27	Schmidt 2008 ¹⁷⁵	170	8	16	69	0.95	0.81	8.79	0.09	263	90.8
28	Siggelkow 2003 ¹⁹⁰	31	3	4	35	0.91	0.89	11.2	0.12	73	90.4
29	Smith 1998 ¹⁹¹	13	1	2	22	0.92	0.91	19.9	0.13	38	92.1
30	Utech 1996 ¹⁹²	44	20	0	60	0.68	1	4	0	124	83.8
31	Wolfort 2006 ¹³⁹	13	0	3	7	1	0.7	0	0.18	23	86.9
32	Yang 2002 ¹⁹³	100	2	5	20	0.98	0.8	10.47	0.05	127	94.4
	Cumulative	1028	85	136	887	0.92	0.86	10.09	0.12	2136	90.1

3. CT-Breast cancer

S.no	STUDY - CT Breast cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Avril 1996 ¹¹⁹	15	17	0	5	0.46	1	1.29	0	37	54.05
2	Chung 2006 ¹²⁰	25	18	0	17	0.58	1	1.94	0	60	70
3	Crowe 1994 121	9	10	0	1	0.47	1	1.1	0	20	50
4	Eubank 2001 ¹²²	8	3	12	17	0.72	0.58	2.66	0.7	40	62.5
5	Fuster 2008 ¹²³	14	32	0	6	0.3	1	1.18	0	52	38.4
6	Gallowitsch 2003 124	28	9	5	15	0.75	0.75	2.26	0.24	57	75.4
7	Gil-Rendo 2006 ¹²⁵	120	131	2	22	0.47	0.91	1.14	0.11	275	51.6
8	Guller 2002 ¹²⁶	6	16	1	8	0.27	0.88	1.28	0.42	31	11.8
9	Hagay 1996 ¹²⁷	42	11	4	61	0.79	0.93	5.97	0.1	118	87.2
10	Haug 2007 ¹²⁸	23	2	2	7	0.92	0.77	4.14	0.1	34	88.2
11	Kumar 2006 ¹²⁹	16	42	2	20	0.27	0.9	1.31	0.34	80	45
12	Lovrics 2004 ¹³⁰	9	63	2	16	0.12	0.88	1.02	0.89	90	27.7
13	Ohta 2000 ¹³¹	14	13	0	6	0.51	1	1.46	0	33	60.6
14	Piperkova 2007 ¹³²	198	18	28	13	0.91	0.31	1.5	0.29	257	82.1
15	Radan 2006 ¹³³	14	9	6	8	0.6	0.57	1.32	0.63	37	59.4
16	Schirrmeister 2001 134	27	45	6	7	0.37	0.53	0.94	1.35	85	40
17	Ternier 2006 ¹³⁵	47	5	5	46	0.9	0.9	9.21	0.1	103	59.4
18	Vander 2002 ¹³⁶	8	37	1	24	0.17	0.96	1.46	0.28	70	45.7
19	Veronesi 2007 ¹³⁷	38	128	5	65	0.22	0.92	1.33	0.34	236	42.7
20	Wahl 2004 ¹³⁸	66	159	40	43	0.29	0.51	0.79	1.77	308	35.3
21	Wolfort 2006 ¹³⁹	9	0	4	7	1	0.63	0	0.3	20	80
22	Yang 2008 ¹⁴⁰	20	3	0	1	0.86	1	1.33	0	24	41.6
23	Yutani 1999 ¹⁴¹	8	16	0	2	0.33	1	1.12	0	26	38.4
24	Zornoza 2004 ¹⁴²	90	91	2	17	0.49	0.89	1.16	0.13	200	53.5
25	Mohammed 2020	19	1	2	8	0.95	0.8	8.14	0.1	30	90
26	Mohammed S 2020	13	3	4	40	0.81	0.9	10.9	0.25	60	88.3
	Cumulative	886	882	133	482	0.5	0.78	1.34	0.66	2383	57.4

4. MRI-Breast cancer

S.no	STUDY - MRI Breast cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Belli 2002 ¹⁴³	22	2	0	16	0.91	1	9	0	40	95
2	Bender 1997 ¹⁴⁴	13	2	1	58	0.86	0.98	27.8	0.07	74	95.9
3	Drew 1998 ¹⁴⁵	63	3	0	39	0.95	1	14	0	105	97.1
4	Gilles 1993 ¹⁴⁶	14	1	0	11	0.93	1	12	0	26	96.1
5	Harada 2007 ¹⁴⁷	23	2	0	8	0.92	1	5	0	33	93.9
6	Hathaway 1999 ¹⁴⁸	6	0	0	1	1	1	0	0	7	100
7	Kimura 2010 ¹⁴⁹	2	0	0	8	1	1	0	0	10	100
8	Melani 1995 ¹⁵⁰	7	1	0	12	0.87	1	13	0	20	95
9	Memarse 2006 ¹⁵¹	6	0	0	16	1	1	0	0	22	100
10	Micheal 2002 ¹⁵²	9	0	2	7	1	0.7	0	0.18	18	88.8
11	Mumtaz 1997 ¹⁵³	36	6	4	29	0.85	0.87	5.25	0.12	75	86.6
12	Murray 2002 ¹⁵⁴	10	17	0	20	0.37	1	2.17	0	47	63.8
13	Muuller 1998 ¹⁵⁵	10	2	0	55	0.83	1	28.5	0	67	97.1
14	Qayyum 2000 ¹⁵⁶	26	1	1	20	0.96	0.95	20.2	0.03	48	95.8
15	Stadnik 2006 ¹⁵⁷	5	1	0	4	0.83	1	5	0	10	90
16	Riebe 2007 ¹⁵⁸	10	5	1	11	0.66	0.91	2.9	0.13	27	77.7
	Cumulative	262	43	9	315	0.85	0.97	8.04	0.03	629	91.7

Appendix-III

PET/CT- Head and Neck cancer

S.no	STUDY - PET/CT Head and neck cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Abgral 2009 222	30	9	0	52	0.76	1	6.77	0	91	90.1
2	Babin 2008 ²²³	3	2	0	12	0.6	1	7	0	17	88.2
3	Cetin 2013 224	16	6	3	11	0.72	0.78	2.38	0.24	36	75
4	Chan 2006 225	21	2	1	10	0.91	0.9	5.72	0.05	34	91.1
5	Chauhan 2012 226	15	1	6	29	0.93	0.82	21.4	0.29	51	86.2
6	Fakhry 2007 227	17	6	1	8	0.73	0.88	2.2	0.09	32	78.1
7	Ghanooni 2011 ²²⁸	14	17	1	87	0.45	0.98	5.7	0.07	119	84.8
8	Gordin 2006 229	23	1	2	25	0.95	0.92	23.9	0.08	51	94.1
9	Gordin 2007 ²³⁰	46	3	6	52	0.93	0.89	16.2	0.12	107	91.5
10	Goshen 2005 ²³¹	11	2	0	4	0.84	1	3	0	17	88.2
11	Ho 2013 ²³²	18	7	0	227	0.72	1	33.4	0	252	97.2
12	Jeong 2007 ²³³	25	6	1	15	0.8	0.93	3.36	0.05	47	85.1
13	Kao 1998 ²³⁴	11	1	0	24	0.91	1	25	0	36	97.2
14	Kim 2007 235	39	23	1	286	0.62	0.99	13	0.02	349	93.1
15	Kim 2011 ²³⁶	74	13	15	126	0.85	0.89	8.89	0.18	228	87.7
16	Kim 2013 ²³⁷	25	5	2	87	0.83	0.97	17	0.07	119	94.1
17	Krabbe 2008 ²³⁸	4	1	4	29	0.8	0.87	15	0.51	38	86.8
18	Krabbe 2009 ²³⁹	16	26	0	66	0.38	1	3.53	0	108	75.9
19	Kubota 2004 ²⁴⁰	7	3	0	10	0.7	1	4.33	0	20	85
20	Lee 2007 ²⁴¹	15	5	1	74	0.75	0.98	14.8	0.06	95	93.6
21	Lee 2015 ²⁴²	15	1	5	18	0.93	0.78	14.2	0.26	39	84.6
22	Li 2001 ²⁴³	20	3	2	18	0.86	0.9	6.36	0.1	43	88.3
23	Nahmias 2007 ²⁴⁴	37	10	5	22	0.78	0.81	2.81	0.17	74	79.7
24	Nakamura 2013 ²⁴⁵	119	6	9	136	0.95	0.93	22	0.07	270	94.4
25	Ng 2010 ²⁴⁶	48	12	7	112	0.8	0.94	9.01	0.14	179	89.3
26	Paidpally 2013 ²⁴⁷	22	19	4	182	0.53	0.97	8.95	0.16	227	89.8
27	Robin 2015 ²⁴⁸	22	12	1	81	0.64	0.98	7.41	0.04	116	88.7
28	Roh 2007 ²⁴⁹	30	4	3	26	0.88	0.89	6.81	0.1	63	88.8
29	Roh 2014 ²⁵⁰	27	10	11	43	0.72	0.79	3.76	0.35	91	76.9
30	Salaun 2007 ²⁵¹	8	1	0	21	0.88	1	22	0	30	96.6
31	Schroeder 2008 252	0	0	58	7	0	0.61	0	1	13	53.8
32	Seitz 2009 ²¹⁶	39	0	2	0	1	0	0	0	41	95.1
33	Sohn 2016 ²⁵³	16	2	9	22	0.88	0.7	7.68	0.39	49	77.5
34	Stoeckli 2002 ²⁵⁴	1	1	3	7	0.5	0.7	2	0.85	12	66.6
35	Stokkel 1999 ²⁵⁵	17	7	0	24	0.7	1	4.42	0	48	85.4
36	Tsai 2002 ²⁵⁶	14	1	0	13	0.93	1	14	0	28	96.4
37	Wierzbicka 2011 ²⁵⁷	31	8	5	39	0.79	0.88	5.05	0.16	83	84.3
38	Wong 2002 ²⁵⁸	69	31	3	78	0.69	0.96	3.36	0.05	181	81.2
39	Yamaga 2018 2259	10	39	21	135	0.05	0.86	1.43	0.87	205	70.7
40	Yen 2003 ²⁶⁰	21	3	0	43	0.2	1	15.3	0.87	67	95.5
40	Zundel 2011 ²⁶¹	4	17	0	31	0.87	1	2.82	0	52	67.3
41 	Cumulative	1000	326	192	2292	29.9	36.5	391.95	6.54	3758	87.6

Appendix -IV

1. PET- Head and Neck cancer

S.no	STUDY - PET Head and neck cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Chang 2005 ²⁶²	14	8	73	0	0.63	0	0.16	0	95	14.7
2	Liu 2006 ²⁶³	21	2	170	9	0.91	0.05	0.6	1.08	202	14.8
3	Shu-hang 2006 ²⁶⁴	21	13	30	393	0.61	0.92	12.8	0.6	457	88.6
4	Shu 2006 ²⁶⁴	18	8	17	91	0.69	0.84	6.36	0.52	134	81.3
	Cumulative	74	31	290	493	2.84	1.81	19.92	2.2	888	64%

2. CT- Head and Neck cancer

S.no	STUDY - CT Head and neck cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Adams 1998 ¹⁹⁴	96	175	21	992	0.35	0.97	5.47	0.21	1284	84.7
2	Akoglu 2005 ¹⁹⁵	21	2	6	12	0.91	0.66	5.44	0.25	41	80.4
3	Braams 1995 ¹⁹⁶	5	10	4	13	0.33	0.76	1.27	0.78	32	56.2
4	Curtin 1998 ¹⁹⁷	57	415	1	62	0.12	0.98	1.12	0.13	535	22.2
5	Dammann 2005 ¹⁹⁸	32	17	8	236	0.65	0.96	11.09	0.21	293	91.4
6	Eida 2003 ¹⁹⁹	3	5	3	162	0.37	0.98	16.7	0.51	173	95.3
7	Fan 2006 ²⁰⁰	23	11	4	4	0.67	0.5	1.16	0.55	42	64.2
8	Hafidh 2006 ²⁰¹	8	10	12	2	0.44	0.14	0.48	3.6	32	31.2
9	Kau 1999 ²⁰²	6	17	1	17	0.26	0.94	1.71	0.28	41	56.9
10	Ke 2006 ²⁰³	10	3	3	4	0.76	0.57	1.79	0.4	20	70
11	Lu 2007 ²⁰⁴	11	1	3	6	0.91	0.66	5.5	0.25	21	80.9
12	Mcguirt 1995 ²⁰⁵	18	3	1	19	0.85	0.95	6.94	0.06	41	90.2
13	Paulus 1998 206	8	1	0	4	0.88	1	5	0	13	92.3
14	Peters 2012 207	10	56	0	1	0.15	1	1.01	0	67	16.4
15	Wu 2010 ²⁰⁸	10	1	2	11	0.9	0.84	10	0.18	24	87.5
16	Yoon 2009 ²⁰⁹	57	2	17	326	0.96	0.95	126	0.23	402	95.2
	Cumulative	375	729	86	1871	9.51	12.86	200.68	7.64	3061	73.3

3. MRI- Head and Neck cancer

S.no	STUDY - MRI Head and neck cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Adams 1998 ¹⁹⁴	94	250	23	917	0.27	0.97	3.75	0.25	1284	78.7
2	Akoglu 2005 ¹⁹⁵	16	1	11	13	0.94	0.54	8.29	0.43	41	70.7
3	Braams 1995 ¹⁹⁶	5	6	10	134	0.45	0.93	7.77	0.69	155	89.6
4	Curtin 1997 ¹⁹⁷	53	382	5	95	0.12	0.95	1.14	0.43	535	27.6
5	Dammann 2005 ¹⁹⁸	37	14	3	239	0.72	0.98	16.7	0.07	293	94.1
6	Ding 2005 ²¹⁰	132	27	34	255	0.83	0.88	8.3	0.22	448	86.3
7	Gu 2000 ²¹¹	8	3	1	50	0.72	0.98	15.7	0.11	62	93.5
8	Hafidh 2006 ²⁰¹	11	10	9	2	0.52	0.18	0.66	2.7	32	40.6
9	Hao 2000 ²¹²	30	2	11	38	0.93	0.77	14.6	0.28	81	83.9
10	Kau 1999 ²⁰²	2	17	1	15	0.1	0.93	1.25	0.71	35	48.5
11	Laubenbacher 1994 ²¹³	13	7	5	9	0.65	0.64	1.65	0.49	34	64.7
12	Nakamoto 2009 ²¹⁴	16	2	4	30	0.88	0.88	12.8	0.21	52	88.4
13	Olmos 1999 ²¹⁵	22	11	2	27	0.66	0.93	3.16	0.11	62	79
14	Seitz 2009 ²¹⁶	20	1	0	4	0.95	1	5	0	25	96
15	VandenBrekel 1991 217	87	13	42	415	0.87	0.9	22.2	0.33	557	90.1
16	Wang 1999 ²¹⁸	23	0	15	130	1	0.89	0	0.39	168	91.07
17	Wide 1999 ²¹⁹	18	11	9	34	0.62	0.79	2.72	0.44	72	72.2
18	Wilson 1994 ²²⁰	17	16	0	18	0.51	1	2.12	0	51	68.6
19	Yoon 2009 ²⁰⁹	57	2	17	326	0.96	0.95	126	0.23	402	95.2
20	Yuan 2000 ²²¹	12	1	2	9	0.92	0.81	8.57	0.15	24	87.5
	Cumulative	673	776	204	2760	13.62	16.9	262.38	8.24	4413	77.7

Appendix-VI

1. PET/CT-Gastro Cancer (GC)

S.no	STUDY - PET/CT GI cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Dirisamer 2009 ²⁷²	30	1	1	30	0.96	0.96	30	0.03	62	96.7
2	Kawanaka 2016 ²⁷³	29	0	13	44	1	0.77	0	0.3	86	84.8
3	Satoh ²⁷⁰	25	5	1	76	0.83	0.98	15.5	0.04	107	94.3
4	Soussan ²⁷¹	16	3	3	8	0.84	0.72	3.08	0.21	30	80
	Cumulative	100	9	18	158	3.63	3.43	48.58	0.58	285	90.5

PET- Gastric cancer

S.no	STUDY - PET GI cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Chen 2005 ²⁶⁵	3	1	7	57	0.75	0.89	17.4	0.71	68	88.2
2	Kim 2011 ²⁶⁶	1	2	1	5	0.33	0.83	1.75	0.7	9	66.6
3	Lim 2006 ²⁶⁷	6	1	11	94	0.85	0.89	33.5	0.65	112	89.2
4	Potter 2002 ²⁶⁸	5	2	3	3	0.71	0.5	1.56	0.62	13	61.5
	Cumulative	15	6	22	159	2.64	3.11	54.21	2.68	202	86.1

2. CT- Gastric cancer

S.no	STUDY - CT GI cancer	TP	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	Duhr 2011 274	31	1	1	4	0.96	0.8	4.84	0.03	37	94.5
2	Giganti 2016 ²⁷⁵	18	3	2	32	0.85	0.94	10.5	0.1	55	90.9
3	Karakoyun 2014 ²⁷⁶	39	4	1	11	0.9	0.91	3.65	0.03	55	90.9
4	. Kawanaka 2016 ²⁷³	30	0	12	44	1	0.78	0	0.28	86	86.4
5	Kim 2011 ²⁶⁶	44	1	15	11	0.97	0.42	8.94	0.27	71	77.4
7	Kim SJ 2009 ²⁷⁷	27	17	26	428	0.61	0.94	13.33	0.51	498	91.3
	Cumulative	189	26	57	530	5.29	4.79	41.26	1.22	802	89.6

3. MRI- Gastric cancer

S.no	STUDY - MRI GI cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy %
1	1 Fuji 2008 ²⁶⁹	13	1	2	10	0.92	0.83	9.53	0.14	26	88.4
2	2 Satoh 2011 ²⁷⁰	20	16	4	90	0.55	0.95	5.52	0.19	130	84.6
3	3 Soussan 2012 ²⁷¹	16	2	3	9	0.88	0.75	4.63	0.19	30	83.3
	Cumulative	49	19	9	109	2.35	2.53	19.68	0.52	186	84.9

Appendix-VI PET/CT- Lung cancer

	STUDY - PET/CT - Lung Cance	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1	Annema 2010 ²⁷³	58	0	13	52	1	0.8	0	0.18	123	89.4
2	Herth 2010 274	68	0	3	68	1	0.95	0	0.04	139	97.8
з	Hwangbo 2009 ²⁷⁵	41	0	4	98	1	0.96	0	0.08	143	97.2
4	Kang 2014 ²⁷⁶	52	0	7	89	1	0.92	0	0.11	148	95.2
5	Lee 2014 277	29	0	0	8	1	1	0	0	37	100
6	Liberman 2014 278	47	0	5	114	1	0.95	0	0.09	166	96.9
7	Ohnishi 2011 ²⁷⁹	28	0	11	71	1	0.86	0	0.28	110	90
8	Oki 2014 ²⁸⁰	24	0	9	113	1	0.92	0	0.27	146	93.8
9	Wallace 2008 281	39	0	3	96	1	0.96	0	0.07	138	97.8
10	Schumacher 2001 282	20	0	0	6	1	1	0	0	26	100
11	Hauber 2001 ²⁸³	1	0	0	6	1	1	0	0	7	100
12	Chin 2002 284	10	0	1	7	1	0.87	0	0.09	18	94.4
13	Kamel 2003 ²⁸⁵	9	0	0	15	1	1	0	0	24	100
14	Pandit 2003 ²⁸⁶	4	0	0	4	1	1	0	0	8	100
15	Bradley 2004 287	2	1	0	21	0.66	1	22	0	24	95.8
16	Brink 2004 ²⁸⁸	76	1	0	43	0.98	1	44	0	120	99.1
17	Kut 2007 ²⁸⁹	12	0	0	6	1	1	0	0	18	100
18	Fischer 2007 ²⁹⁰	13	0	1	6	1	0.85	0	0.07	20	95
19	Vinjamuri 2008 ²⁹¹	25	1	2	23	0.96	0.92	22.2	0.07	51	100
20	Arslan 2011 ²⁹²	9	0	0	3	1	1	0	0	12	83.3
	Arsian 2011					1		0	-		
21	Orlacchio 2007 ²⁹³	20	0	6	100		0.94	-	0.23	126	95.2
22	Herder 2004 ²⁹⁴	13	5	1	17	0.72	0.94	4.08	0.09	36	83.3
23	Degirmenci 2008 ²⁹⁵	16	5	10	18	0.76	0.64	2.83	0.49	49	69.3
24	Martins 2008 ²⁹⁶	13	5	1	13	0.72	0.92	3.34	0.09	32	81.2
25	Sim 2013 297	137	14	21	14	0.9	0.4	1.73	0.26	186	81.1
26	Dalli 2013 ²⁹⁸	54	18	26	111	0.75	0.81	4.83	0.37	209	78.9
27	Zhang 2014 ²⁹⁹	68	6	9	30	0.91	0.76	5.29	0.14	113	86.7
28	Jeong 2007 ³⁰⁰	31	7	9	53	0.81	0.85	6.64	0.25	100	73.1
29	Li 2014 301	199	31	49	19	0.86	0.27	1.29	0.51	298	88.5
30	Li 2011 ³⁰²	58	9	2	27	0.86	0.93	3.86	0.04	96	88.5
31	Lopez 2015 ³⁰³	32	7	8	8	0.82	0.5	1.71	0.37	55	72.7
32	Dabrowska 2015 ³⁰⁴	37	1	12	21	0.97	0.63	16.6	0.25	71	81.6
33	Tasci 2010 ³⁰⁵	17	19	2	89	0.47	0.97	5.08	0.12	127	83.4
34	Li 2010 ³⁰⁶	41	12	8	97	0.77	0.92	7.6	0.18	158	87.3
35	Sit 2010 ³⁰⁷	15	18	14	110	0.45	0.88	3.67	0.56	157	79.6
36	Hwangbo 2009 275	21	35	9	52	0.37	0.85	1.74	0.5	117	25.6
36	Bille 2009 ³⁰⁸	14	7	9 17	121	0.57	0.85	8.25	0.58	159	84.9
	Porigoud 2009	4			35	0.88	0.87	2.73	0.58	51	76.4
38	Perigaud 2009 309	4 9	6	6					-		
39	Sanli 2009 ³¹⁰		7	2	60	0.56	0.96	7.83	0.2	78	88.4
40	Lee 2009 ³¹¹	27	16	9	130	0.62	0.93	6.84	0.28	182	86.2
41	Al-Sarraf 2008 ³¹²	48	20	53	842	0.7	0.94	20.48	0.53	963	10.4
42	Yang 2008 313	18	11	7	86	0.62	0.92	6.34	0.31	122	85.2
43	Hu 2008 ³¹⁴	117	72	17	378	0.61	0.95	5.45	0.15	584	84.7
44	Kim 2007 ³¹⁵	110	21	70	473	0.83	0.87	14.37	0.4	674	86.4
44	Lee 2007 ³¹⁶	24	19	4	473 79	0.55	0.95	4.42	0.17	126	81.7
45	Bryant 2006 317		33	4 12	195	0.55	0.95	6.32	0.17	371	87.8
46	Tassia 2020 ³¹⁸	131			280	0.79	0.94	13.7	0.18	536	88.9
	1 assid 2020	197	18	41				13.7	0.18		88.9
48	Bille 2013 319	28	13	32	280	0.68	0.89			353	
49	Carnochan 2009 ³²⁰	19	27	18	130	0.41	0.87	2.98	0.58	194	76.8
50	Chen 2010 321	31	1	0	24	0.96	1	25	0	56	98.2
51	Czepczynski 2011 322	9	0	0	42	1	1	0	0	51	100
52	Darling 2011 323	14	8	6	121	0.63	0.95	11.28	0.31	149	90.6
53	De wever 2007 ³²⁴	10	6	1	33	0.62	0.97	5.9	0.1	50	86
54	El-Hariri 2012 325	6	2	1	24	0.75	0.96	11.14	0.15	33	90.9
55	Fischer 2011 326	18	10	8	43	0.64	0.84	3.66	0.37	79	77.2
56	Gunluoglu 2011 ³²⁷	35	30	14	89	0.53	0.86	2.83	0.38	168	73.8
57	Harders 2012 328	15	22	15	62	0.4	0.8	1.9	0.67	114	67.5
58	Hu 2011 ³²⁹	29	25	5	43	0.53	0.89	2.32	0.23	102	70.5
59	Iskender 2012 ³³⁰	63	65	6	152	0.49	0.96	3.04	0.12	286	75.1
60	Jeon 2010 ³³¹	32	8	20	150	0.8	0.88	12.15	0.4	210	86.6
61	Koksal 2013 ³³²	8	22	4	47	0.26	0.92	2.09	0.48	81	55.5
62	Kuo 2012 ³³³	8 10	17	9	66	0.37	0.88	2.56	0.59	102	74.5
63	Lee 2011 ³³⁴	7	12	8	27	0.36	0.88	1.51	0.39	54	62.9
	Lee 2011 Lee 2012 ³³⁵		12	5		0.05	0.96	1.6	0.93	160	86.8
64	Lie 2012 Li 2010 ³³⁶	1	10		138 97	0.05	0.98	7.6	0.93	158	87.3
65		41		8					-		
66	Li 2012 ³³⁷	13	0	6	61	1	0.91	0	0.31	80	92.5
67	Morikawa 2009 ³³⁸	55	11	6	21	0.83	0.77	2.62	0.14	93	81.7
68	Ohno 2011 339	16	0	5	229	1	0.97	0	0.23	250	98
69	Ose 2012 ³⁴⁰	7	5	7	93	0.58	0.93	9.8	0.52	112	12.5
70	Ozkan 2011 341	84	16	23	30	0.84	0.56	2.25	0.32	153	74.5
71	Plathow 2008 342	38	0	0	14	1	1	0	0	52	100
72	Saydam 2012 343	16	8	3	15	0.66	0.83	2.42	0.24	42	73.8
73	Shin 2008 344	11	8	12	153	0.57	0.92	9.62	0.54	184	89.1
74	Sommer 2012 ³⁴⁵	2	1	4	24	0.66	0.85	8.33	0.69	31	83.8
75	Subedi 2009 ³⁴⁶	22	10	2	57	0.68	0.96	6.14	0.09	91	86.8
76	Toba 2010 ³⁴⁷	8	4	0	30	0.66	1	8.5	0	42	90.4
	Tournoy 2007 ³⁴⁸	25	4	3	16	0.86	0.84	4.46	0.13	48	85.4
					137	0.4	0.87	3.37	0.73	182	80.7
77	Uruga 2011 349	10	15								
77 78	Uruga 2011 ³⁴⁹	10 28	15 4	20			0.5	1040	0.2	36	83.3
77 78 79	Uruga 2011 ³⁴⁹ Uskul 2009 ³⁵⁰	28	4	2	2	0.87	0.5	1040	0.2	36	83.3
77 78 79 80	Uruga 2011 ³⁴⁹ Uskul 2009 ³⁵⁰ Usuda 2013 ³⁵¹	28 6	4 1	2 10	2 143	0.87 0.85	0.93	54	0.62	160	93.1
77 78 79	Uruga 2011 ³⁴⁹ Uskul 2009 ³⁵⁰	28	4	2	2	0.87		-			

PET- Lung cancer

	STUDY - PET - Lung Cancer	ТР	FP	FN	ΤN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1	Scott 1994 353	2	3	1	19	0.4	0.95	4.88	0.38	25	84
2	Wahl 1994 ³⁵⁴	9	3	2	13	0.75	0.86	4.36	0.22	27	100
3	Chin 1995 355	7	4	2	17	0.63	0.89	4.08	0.27	30	80
4	Valk 1995 ³⁵⁶	20	3	4	49	0.86	0.92	14.4	0.17	76	90.7
5	Scott 1996 357	9	0	0	18	1	1	0	0	27	100
6	Sazon 1996 ³⁵⁸	16	0	0	16	1	1	0	0	32	100
7	Sasaki 1996 ³⁵⁹	13	1	4	53	0.92	0.92	41.2	0.23	71	92.9
8	Vansteenkiste 1997 360	10	1	5	34	0.9	0.87	23.3	0.34	50	88
9	Steinert 1997 ³⁶¹	25	1	3	83	0.96	0.96	75	0.1	112	96.4
10	Guhlmann 1997 ³⁶²	13	0	2	17	1	0.89	0	0.13	32	93.7
11	Hagberg 1997 ³⁶³	6	0	3	9	1	0.75	0	0.33	18	83.3
12	Bury 1997 ³⁶⁴	12	0	2	52	1	0.96	0	0.14	66	96.9
13	Saunders 1999 ³⁶⁵	12	2	5	65	0.85	0.92	23.6	0.3	90	85.5
14	Marom 1999 ³⁶⁶	40	3	4	31	0.93	0.88	10.3	0.09	78	91
15	Pieterman 2000 367	29	10	3	60	0.74	0.95	6.34	0.1	102	87.2
16	Gupta 2000 ³⁶⁸	51	8	2	107	0.86	0.98	13.8	0.04	168	94
17	Poncelet 2001 369	6	8	3	44	0.42	0.93	4.33	0.39	61	81.9
18	Yasuomi 2009 ³⁷⁰	61	4	9	23	0.93	0.71	5.88	0.15	97	86.5
	Yasuomi O 2009 ³⁷⁰	8	1	18	0	0.88	0	0.3	0	27	29.6
	Cummulative	349	52	72	710	0.87	0.9	12.14	0.18	1183	89.5

CT- Lung cancer

S.no	STUDY - CT - Lung Cancer	TP	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1	Szlubowski 2010 ³⁷¹	19	2	9	90	0.9	0.9	31.2	0.32	120	90.8
2	Szlubowski 2012 ³⁷²	106	0	14	94	1	0.87	0	0.11	214	93.4
3	Vilmann 2005 ³⁷³	20	0	0	11	1	1	0	0	31	100
4	Scott 1994 353	1	2	2	20	0.33	0.9	3.66	0.73	25	84
5	Wahl 1994 354	7	9	4	7	0.43	0.63	1.13	0.83	27	51.8
6	Chin 1995 355	5	3	4	18	0.62	0.81	3.88	0.51	30	76.6
7	Valk 1995 356	15	14	9	38	0.51	0.8	2.32	0.51	76	69.7
8	Scott 1996 357	6	3	3	15	0.66	0.83	4	0.4	27	77.7
9	Sazon 1996 ³⁵⁸	13	7	3	9	0.65	0.75	1.85	0.33	32	68.7
10	Sasaki 1996 359	11	7	6	47	0.61	0.88	4.99	0.4	71	81.6
11	Vansteenkiste 1997 360	10	13	5	22	0.43	0.81	1.79	0.53	50	64
12	Steinert 1997 361	16	5	12	79	0.76	0.86	9.6	0.45	112	84.8
13	Guhlmann 1997 362	8	3	7	14	0.76	0.86	9.6	0.45	112	19.6
14	Hagberg 1997 ³⁶³	5	0	4	9	1	0.69	0	0.44	18	77.7
15	Bury 1997 ³⁶⁴	11	8	3	44	0.57	0.93	5.1	0.25	66	83.3
16	Saunders 1999 ³⁶⁵	3	7	12	62	0.3	8.83	1.97	0.89	84	77.3
17	Marom 1999 ³⁶⁶	26	4	18	30	0.86	0.62	5.02	0.46	78	71.7
18	Pieterman 2000 ³⁶⁷	24	24	8	46	0.5	0.85	2.18	0.38	102	68.6
19	Gupta 2000 ³⁶⁸	36	36	17	79	0.5	0.82	2.16	0.46	168	68.4
20	Poncelet 2001 369	5	17	4	36	0.22	0.9	1.73	0.65	62	66.1
	Cummulative	347	164	144	770	0.67	0.84	4.02	0.35	1425	78.3

MRI- Lung cancer

	STUDY - MRI - Lung Cancer	ТР	FP	FN	TN	PPV	NPV	LR+	LR-	Total	Over all accuracy
1	Tassia 2020 318	61	21	21	162	0.74	0.88	6.48	0.28	265	30.9
2	Yasuomi 2009 ³⁷⁰	61	4	9	23	0.93	0.71	5.88	0.15	97	72.1
3	Yasuomi O 2009 ³⁷⁰	8	1	18	0	0.88	0	0.3	0	27	96.2
4	Stuart 2019 374	26	9	26	126	0.74	0.82	7.5	0.53	187	81.2
5	Stuart A 2019 374	28	6	24	129	0.82	0.84	12.11	0.48	187	83.9
	Cummulative	184	41	98	440	0.83	0.79	5.92	0.3	389	80.9

Appendix VII

-	in PubMed	
Search	Query	Items found
#1	Search ((cervical cancer [MeSH Terms]) OR lymph node)	644598
	[MeSH Terms]) OR pelvic [MeSH Terms]	
#2	Search (((positron emission tomography computed	2018
	tomography [MeSH Terms]) OR PET/CT[MeSH Terms])	
	AND positron emission tomography[MeSH Terms]) OR	
	PET[MeSH Terms]	
#3	Search (((sensitivity[MeSH Terms]) OR	93255
	sensitiveness[MeSH Terms]) AND specificity[MeSH	
	Terms]) OR particularity[MeSH Terms]	
#4	Search (((positron emission tomography computed	794002
	tomography[MeSH Terms]) OR PET/CT[MeSH Terms])	
	AND computed tomography) OR CT	
#5	Search (((positron emission tomography computed	84060
	tomography[MeSH Terms]) OR PET/CT[MeSH Terms])	
	AND magnetic resonance imaging[MeSH Terms]) OR	
	MRI[MeSH Terms]	
#6	Search (((Breast cancer[MeSH Terms]) OR Mammary	458529
	glands[MeSH Terms]) OR malignant[MeSH Terms]) OR	
	tumor[MeSH Terms]	
#7	Search (((((((((((Breast cancer [MeSH Terms]) OR	15513
	Mammary glands[MeSH Terms]) OR malignant[MeSH	
	Terms]) OR tumor[MeSH Terms]) AND positron emission	
	tomography computed tomography[MeSH Terms]) OR	
	PET/CT[MeSH Terms]) OR computed tomography[MeSH	
	Terms]) OR CT[MeSH Terms]) OR positron emission	
	tomography[MeSH Terms]) OR PET[MeSH Terms]) OR	
	magnetic resonance imaging[MeSH Terms]) OR	
	MRI[MeSH Terms]) AND Sensitivity[MeSH Terms]) AND	
	specificity[MeSH Terms]	
#8	Search (((Head and neck cancer) OR oropharyngeal cancer)	1693552
	OR Malignant) OR tumor	
#9	Search (((((((((((((Head and neck cancer[MeSH Terms]) OR	15513
	oropharyngeal cancer[MeSH Terms]) OR Malignant[MeSH	
	67	1

Terms]) OR tumor[MeSH Terms]) AND positron emission tomography computed tomography[MeSH Terms]) OR	
tomography computed tomography[MeSH Terms]) OR	
PET/CT[MeSH Terms]) OR computed tomography[MeSH	
Terms]) OR CT[MeSH Terms]) OR positron emission	
tomography[MeSH Terms]) OR PET[MeSH Terms]) OR	
magnetic resonance imaging[MeSH Terms]) OR	
MRI[MeSH Terms]) AND Sensitivity[MeSH Terms]) AND	
Specificity[MeSH Terms]	
#10 Search ((((Gastro intestinal cancer) OR gastric cancer) OR 727	7776
stomach cancer) OR malignant) OR tomor	
#11 Search ((((((((((((Gastro intestinal cancer[MeSH Terms]) 155	513
OR gastric cancer[MeSH Terms]) OR stomach	
cancer[MeSH Terms]) OR malignant[MeSH Terms]) OR	
tumor[MeSH Terms]) AND positron emission tomography	
computed tomography[MeSH Terms]) OR PET/CT[MeSH	
Terms]) OR computed tomography[MeSH Terms]) OR	
CT[MeSH Terms]) OR positron emission	
tomography[MeSH Terms]) OR PET[MeSH Terms]) OR	
magnetic resonance imaging[MeSH Terms]) OR	
MRI[MeSH Terms]) AND Sensitivity[MeSH Terms]) AND	
Specificity[MeSH Terms]	

Queries	in Cochrane	
Search	Query	Items found
#1	Search (cervical cancer)):ti,ab,kw OR (lymph node)	54321
):ti,ab,kw OR (pelvic):ti,ab,kw	
#2	Search (positron emission tomography computed	24642
	tomography):ti,ab,kw OR (PET/CT):ti,ab,kw AND (positron	
	emission tomography):ti,ab,kw OR (PET):ti,ab,kw	
#3	Search (sensitivity) :ti,ab,kw OR (sensitiveness):ti,ab,kw	16617
	AND specificity):ti,ab,kw	

#4	Search (positron emission tomography computed	744256
	tomography):ti,ab,kw OR (PET/CT):ti,ab,kw AND	
	(computed tomography):ti,ab,kw OR 9CT):ti,ab,kw	
#5	Search (positron emission tomography computed	561469
	tomography):ti,ab,kw OR (PET/CT):ti,ab,kw AND magnetic	
	resonance imaging):ti,ab,kw OR (MRI):ti,ab,kw	
#6	Search (Breast cancer):ti,ab,kw OR (Mammary	37305
	glands):ti,ab,kw OR (malignant):ti,ab,kw OR	
	(tumor):ti,ab,kw	
#7	Search (Breast cancer):ti,ab,kw OR (Mammary	116881
	glands):ti,ab,kw OR (malignant))ti,ab,kw OR	
	(tumor):ti,ab,kw AND (positron emission tomography	
	computed tomography) :ti,ab,kw OR PET/CT):ti,ab,kw OR	
	computed tomography):ti,ab,kw OR CT):ti,ab,kw OR	
	positron emission tomography):ti,ab,kw OR PET):ti,ab,kw	
	OR magnetic resonance imaging):ti,ab,kw OR	
	MRI):ti,ab,kw AND Sensitivity):ti,ab,kw AND	
	specificity):ti,ab,kw	
#8	Search (Head and neck cancer)):ti,ab,kw OR oropharyngeal	1693552
	cancer)):ti,ab,kw OR Malignant)):ti,ab,kw OR	
	tumor):ti,ab,kw	
#9	Search (Head and neck cancer):ti,ab,kw OR oropharyngeal	561196
	cancer):ti,ab,kw OR Malignant):ti,ab,kw OR tumor):ti,ab,kw	
	AND positron emission tomography computed	
	tomography):ti,ab,kw OR PET/CT):ti,ab,kw OR computed	
	tomography):ti,ab,kw OR CT):ti,ab,kw OR positron	
	emission tomography):ti,ab,kw OR PET):ti,ab,kw OR	
	magnetic resonance imaging):ti,ab,kw OR MRI):ti,ab,kw	
	AND Sensitivity):ti,ab,kw AND Specificity):ti,ab,kw	
#10	Search (Gastro intestinal cancer)):ti,ab,kw OR gastric	8087
	cancer)):ti,ab,kw OR stomach cancer) OR malignant)	
):ti,ab,kw OR tomor):ti,ab,kw	
#11	Search (Gastro intestinal cancer):ti,ab,kw OR gastric	491396
	cancer):ti,ab,kw OR stomach cancer):ti,ab,kw OR	
	malignant):ti,ab,kw OR tumor):ti,ab,kw AND positron	
	emission tomography computed tomography):ti,ab,kw OR	
	PET/CT):ti,ab,kw OR computed tomography):ti,ab,kw OR	
	69	1

CT):ti,ab,kw OR positron emission tomography):ti,ab,kw OR PET):ti,ab,kw OR magnetic resonance imaging):ti,ab,kw OR MRI):ti,ab,kw AND Sensitivity):ti,ab,kw AND Specificity):ti,ab,kw

Google scholar: 1122

References

- 1. Ferlay J, Soerjomataram I, Ervik M, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.; Sept 2018.
- Griffeth LK. Use of PET/CT scanning in cancer patients: Technical and practical considerations. Proc (Bayl Univ Med Cent) 2005;18:321-30.
- 3. http://www.makeinindia.com/article/-/v/sector-surveymedical-devices.
- 4. Wild C, Patera N, Küllinger R, Narath M (2015) PET/PET–CT Evidenz zum Bedarf und Planung (bei onkologischen Indikationen). HTA Projektbericht Nr. 77. LBI-HTA, Wien
- Fuchs S, Olberg B, Perleth M, Busse R, Panteli D (2018) Testing a new taxonomic model for the assessment of medical devices: Is it plausible and applicable? Insights from HTA reports and interviews with HTA institutions in Europe. Health Policy. https://doi.org/10.1016/j.healthpol.2018.03.004
- 6. Ferlay J, Soerjomataram I, Ervik M, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.; Sept 2018
- 7. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet].
- 8. Lyon, France: International Agency for Research on Cancer; 2013.
- 9. Bray F, Ren JS, Masuyer E, et al. Estimates of global cancer prevalence for 27 sites in the adult population in 2008.; 2013; Int J Cancer.; 132(5):1133-45.
- 10. http://www.breastcancerindia.net/bc/statistics/stat_global.htm
- National Cancer Registry Programme. Consolidated report of the population based cancer registries 1990-1996. New Delhi: Indian Council of Medical Research; 2001.
- 12. Sarnath D, Khanna A. Current Status of Cancer Burden:Global and Indian Scenario,; 2014; Biomedical Res J.,1(1):1-5
- 13. Avaliable from-http://cancerindia.org.in/cancer-statistics/
- 14. Avaliable from- https://www.aerb.gov.in/english/regulatory-facilities/radiation-facilities/application-in-medicine/nuclear-medicine1
- 15. Diagnostic imaging: What is it? When and how to use it where resources are limited.
- Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems Juan Jose Vaquero ´1 and Paul Kinahan2, Annu. Rev. Biomed. Eng. 2015.17:385-414
- 17. Available from -https://www.nibib.nih.gov/science-education/science-topics/nuclear-medicine
- Mayerhoefer, M.E., Prosch, H., Beer, L. et al. PET/MRI versus PET/CT in oncology: a prospective singlecenter study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging 47, 51–60 (2020). https://doi.org/10.1007/s00259-019-04452-y
- Khiewvan, B., Torigian, D.A., Emamzadehfard, S. et al. An update on the role of PET/CT and PET/MRI in ovarian cancer. Eur J Nucl Med Mol Imaging 44, 1079–1091 (2017). https://doi.org/10.1007/s00259-017-3638z
- 20. Israel, O., Pellet, O., Biassoni, L. et al. Two decades of SPECT/CT the coming of age of a technology: An

updated review of literature evidence. Eur J Nucl Med Mol Imaging 46, 1990–2012 (2019). https://doi.org/10.1007/s00259-019-04404-6

- 21. CS. 2010. Recent developments in PET instrumentation. Curr. Pharm. Biotechnol. 11(6):555-71
- 22. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems Juan Jose Vaquero ´1 and Paul Kinahan2, Annu. Rev. Biomed. Eng. 2015.17:385-414
- 23. SPECT/CT Imaging: Clinical Utility of an Emerging Technology, Jul 1 2008 https://doi.org/10.1148/rg.284075203
- 24. Atomic Eenergy Regulatory Board India.
- 25. Available from OECD- Organisation for Economic Cooperation and Development
- 26. Global cancer statistics 2018: GLOBOCAN, http://cancerindia.org.in/geographic-distribution-burden-cancersindia/
- 27. Fuchs S, Olberg B, Perleth M, Busse R, Panteli D (2018) Testing a new taxonomic model for the assessment of medical devices: Is it plausible and applicable? Insights from HTA reports and interviews with HTA institutions in Europe. Health Policy. https://doi.org/10.1016/j.healthpol.2018.03.004
- 28. Penny F Whiting, Anne W S Rutjes, Marie E Westwood, Susan Mallett, Jonathan J Deeks, Johannes B Reitsma, Mariska M G Leeflang, Jonathan A C Sterne, Patrick M M Bossuyt, QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies, Ann Intern Med, 2011 Oct 18;155(8):529-36.
- 29. Gatsonis C, Paliwal P. Meta-analysis of diagnostic and screening test accuracy evaluations: methodologic primer. AJR Am J Roentgenol. 2006;187(2):271–281.
- Belhocine T, Thille A, Fridman V, Albert A, Seidel L, Nickers P, et al: Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol 2002; 87: 90–97.
- 31. Choi HJ, Roh JW, Seo SS, Lee S, Kim JY, Kim SK, et al: Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 2006; 106: 914–922.
- 32. Chung HH, Park NH, Kim JW, Song YS, Chung JK, Kang SB: Role of integrated PET-CT in pelvic lymph node staging of cervical cancer before radical hysterectomy. Gynecol Obstet Invest 2009; 67: 61–66.
- 33. Chung HH, Kang KW, Cho JY, Kim JW, Park NH, Song YS, et al: Role of magnetic resonance imaging and positron emission tomography/ computed tomography in preoperative lymph node detection of uterine cervical cancer. Am J Obstet Gynecol 2010; 203: 156.e1–e5.
- 34. Crivellaro C, Signorelli M, Guerra L, De Ponti E, Buda A, Dolci C, et al: 18F-FDG PET/CT can predict nodal metastases but not recurrence in early-stage uterine cervical cancer. Gynecol Oncol 2012; 127: 131–135.
- 35. Havrilesky LJ, Wong TZ, Secord AA, Berchuck A, Clarke-Pearson DL, Jones EL. The role of PET scanning in the detection of recurrent cervical cancer. Gynecol Oncol2003; 90: 186-90
- 36. Kim SK, Choi HJ, Park SY, Lee HY, Seo SS, Yoo CW, et al: Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 2009; 45: 2103–2109.

- 37. Kitajima K, Murakami K, Yamasaki E, Kaji Y, Sugimura K: Accuracy of integrated FDGPET/contrastenhanced CT in detecting pelvic and paraaortic lymph node metastasis in patients with uterine cancer. Eur Radiol 2009; 19: 1529–1536.
- 38. Kitajima K, Yamasaki E, Kaji Y, Murakami K, Sugimura K: Comparison of DWI and PET/ CT in evaluation of lymph node metastasis in uterine cancer. World J Radiol 2012; 4: 207–214.
- 39. Lin WC, Hung YC, Yeh LS, Kao CH, Yen RF, Shen YY: Usefulness of (18)F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol 2003; 89: 73–76.
- 40. Loft A, Berthelsen AK, Roed H et al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol Oncol 2007; 106: 29–34.
- 41. Lv K, Guo HM, Lu YJ, Wu ZX, Zhang K, Han JK: Role of 18F-FDG PET/CT in detecting pelvic lymph-node metastases in patients with early-stage uterine cervical cancer: comparison with MRI findings. Nucl Med Commun 2014; 35: 1204–1211.
- 42. Narayan K, Hicks RJ, Jobling T, Bernshaw D, McKenzie AF: A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. Int J Gynecol Cancer 2001; 11: 263–271.
- 43. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, et al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology 2001;218:776-82.
- 44. Roh JW, Seo SS, Lee S, Kang KW, Kim SK, Sim JS, et al: Role of positron emission tomography in pretreatment lymph node staging of uterine cervical cancer: a prospective surgico pathologic correlation study. Eur J Cancer 2005; 41: 2086–2092.
- 45. Sandvik RM, Jensen PT, Hendel HW, Palle C: Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer. Dan Med Bull 2011; 58: A4240.
- 46. Signorelli M, Guerra L, Montanelli L, Crivellaro C, Buda A, Dell'Anna T, et al: Preoperative staging of cervical cancer: is 18-FDGPET/ CT really effective in patients with early-stage disease? Gynecol Oncol 2011; 123: 236–240.
- 47. Sironi S, Buda A, Picchio M, Perego P, Moreni R, Pellegrino A, et al: Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology 2006; 238: 272–279.
- 48. Stecco A, Buemi F, Cassara A, Matheoud R, Sacchetti GM, Arnulfo A, et al: Comparison of retrospective PET and MRI-DWI (PET/ MRI-DWI) image fusion with PET/CT and MRI-DWI in detection of cervical and endometrial cancer lymph node metastases. Radiol Med 2016; 121: 537–545.
- 49. Wright JD, Dehdashti F, Herzog TJ, Mutch DG, Huettner PC, Rader JS, et al: Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-D-glucose- positron emission tomography. Cancer 2005; 104: 2484–2491.
- 50. Xu X, Li Z, Qiu X, Wei Z: Diagnosis performance of positron emission tomography computed tomography among cervical cancer patients. J Xray Sci Technol 2016; 24: 531–536.

- 51. Yeh LS, Hung YC, Shen YY, Kao CH, Lin CC, Lee CC: Detecting para-aortic lymph nodal metastasis by positron emission tomography of 18F-fluorodeoxyglucose in advanced cervical cancer with negative magnetic resonance imaging findings. Oncol Rep 2002; 9: 1289–1292.
- 52. Yildirim Y, Sehirali S, Avci ME, Yilmaz C, Ertopcu K, Tinar S, et al: Integrated PET/CT for the evaluation of para-aortic nodal metastasis in locally advanced cervical cancer patients with negative conventional CT findings. Gynecol Oncol 2008; 108: 154–159.
- 53. Lv K, Guo HM, Lu YJ, Wu ZX, Zhang K, Han JK: Role of 18F-FDG PET/CT in detecting pelvic lymph-node metastases in patients with early-stage uterine cervical cancer: comparison with MRI findings. Nucl Med Commun 2014; 35: 1204–1211.
- 54. Narayan K, Hicks RJ, Jobling T, Bernshaw D, McKenzie AF: A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. Int J Gynecol Cancer 2001; 11: 263–271.
- 55. Park W, Park YJ, Huh SJ, Kim BG, Bae DS, Lee J, et al: The usefulness of MRI and PET imaging for the detection of parametrial involvement and lymph node metastasis in patients with cervical cancer. Jpn J Clin Oncol 2005; 35: 260–264.
- 56. Ma SY, See LC, Lai CH, Chou HH, Tsai CS, Ng KK, et al: Delayed (18)F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 2003; 44: 1775–1783.
- 57. Rose PG, Adler LP, Rodriguez M, Faulhaber PF, Abdul-Karim FW, Miraldi F: Positron emission tomography for evaluating paraaortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol1999;17: 41–45.
- 58. Kitajima K et al (2008) Performance of FDG-PET/CT for diagnosis of recurrent uterine cervical cancer. Eur Radiol 18(10):2040–2047.
- 59. Amit A, Beck D, Lowenstein L, et al. The role of hybrid PET/CT in the evaluation of patients with cervical cancer. Gynecol Oncol 2006; 100: 65-9.
- 60. Chung HH, Jo H, Kang WJ, et al. Clinical impact of integrated PET/CT on the management of suspected cervical cancer recurrence. Gynecol Oncol 2007; 104: 529-34.
- 61. Grisaru D, Almog B, Levine C, et al. The diagnostic accuracy of 18F-fluorodeoxyglucose PET/CT in patients with gynecological malignancies. Gynecol Oncol 2004; 94: 680-4.
- 62. Mittra E, El-Maghraby T, Rodriguez CA, et al. Efficacy of 18F-FDG PET/CT in the evaluation of patients with recurrent cervical carcinoma. Eur J Nucl Med Mol Imaging 2009; 36: 1952-59.
- 63. Sironi S, Picchio M, Landoni C, et al. Post-therapy surveillance of patients with uterine cancers: value of integrated FDG PET/CT in the detection of recurrence. Eur J Nucl Med Mol Imaging 2007; 34: 472-9.
- 64. Chang TC, Law KS, Hong JH, et al. Positron emission tomography for unexplained elevation of serum squamous cell carcinoma antigen levels during follow-up for patients with cervical malignancies: a phase II study. Cancer 2004; 101: 164-71.
- 65. Kitajima K, Murakami K, Yamasaki E, Domeki Y, Kaji Y, Sugimura K. Performance of FDG-PET/CT for diagnosis of recurrent uterine cervical cancer. Eur Radiol 2008; 18: 2040-47.

- 66. Vander Veldt AA, Buist MR, van Baal MW, Comans EF, Hoekstra OS, Molthoff CF. Clarifying the diagnosis of clinically suspected recurrence of cervical cancer: impact of 18F-FDG PET. J Nucl Med 2008; 49: 1936-43.
- 67. Ryu SY, Kim MH, Choi SC, Choi CW, Lee KH. Detection of early recurrence with 18F-FDG PET in patients with cervical cancer. J Nucl Med 2003; 44: 347-52.
- 68. Sakurai H, Suzuki Y, Nonaka T, et al. FDG-PET in the detection of recurrence of uterine cervical carcinoma following radiation therapy: tumor volume and FDG uptake value. Gynecol Oncol 2006; 100: 601-7.
- 69. Lai CH. Management of recurrent cervical cancer. Chang Gung Med J 2004; 27: 711-7.
- Yen TC, See LC, Chang TC, et al. Defining the priority of using 18F-FDG PET for recurrent cervical cancer. Soc Nucl Med 2004; 45: 1632-9.
- 71. Bandy LC, Clarke-Pearson DL, Silverman PM, Creasman WT: Computed tomography in evaluation of extra pelvic lymphadenopathy in carcinoma of the cervix. Obstet Gynecol 1985; 65: 73–76.
- 72. Bellomi M, Bonomo G, Landoni F, Villa G, Leon ME, Bocciolone L, et al: Accuracy of computed tomography and magnetic resonance imaging in the detection of lymph node involvement in cervix carcinoma. Eur Radiol 2005; 15: 2469–2474.
- 73. Camilien L, Gordon D, Fruchter RG, Maiman M, Boyce JG: Predictive value of computerized tomography in the presurgical evaluation of primary carcinoma of the cervix. Gynecol Oncol 1988; 30: 209–215.
- 74. Chu KK, Chang SD, Chen FP, Soong YK: Laparoscopic surgical staging in cervical cancer preliminary experience among Chinese. Gynecol Oncol 1997; 64: 49–53.
- 75. Van Engelshoven JM, Versteege CW, Ruys JH, de Haan J, Sanches H: Computed tomography in staging untreated patients with cervical cancer. Gynecol Obstet Invest 1984; 18: 289–295.
- 76. Heller PB, Maletano JH, Bundy BN, Barnhill DR, Okagaki T: Clinical-pathologic study of stage IIB, III, and IVA carcinoma of the cervix: extended diagnostic evaluation for paraaortic node metastasis – a Gynecologic Oncology Group study. Gynecol Oncol 1990; 38: 425–430.
- 77. Heron CW, Husband JE, Williams MP, Dobbs J, Cosgrove DO. The value of CT in the diagnosis of recurrent carcinoma of the cervix. Clin Radiol 1988; 39:501.
- 78. Hertel H, Kohler C, Elhawary T, Michels W, Possover M, Schneider A: Laparoscopic staging compared with imaging techniques in the staging of advanced cervical cancer. Gynecol Oncol 2002; 87: 46–51.
- 79. Kim SH, Choi BI, Han JK, Kim HD, Lee HP, Kang SB, et al: Preoperative staging of uterine cervical carcinoma: comparison of CT and MRI in 99 patients. J Comput Assist Tomogr 1993; 17: 633–640.
- 80. Matsukuma K, Tsukamoto N, Matsuyama T, Ono M, Nakano H: Preoperative CT study of lymph nodes in cervical cancer its correlation with histological findings. Gynecol Oncol 1989; 33: 168–171.
- Subak LL, Hricak H, Powell CB, Azizi L, Stern JL: Cervical carcinoma: computed tomography and magnetic resonance imaging for preoperative staging. Obstet Gynecol 1995; 86: 43–50.
- 82. Villasanta U, Whitley NO, Haney PJ, Brenner D: Computed tomography in invasive carcinoma of the cervix: an appraisal. Obstet Gynecol 1983; 62: 218–224.

- Walsh JW, Amendola MA, Konerding KF, Tisnado J, Hazra TA: Computed tomographic detection of pelvic and inguinal lymph node metastases from primary and recurrent pelvic malignant disease. Radiology 1980; 137(1 pt 1):157–166.
- 84. Williams MP, Husband JE, Heron CW, Cherryman GR, Koslin DB. Magnetic resonance imaging in recurrent carcinoma of the cervix. Br J Radiol 2009; 62: 544-50.
- 85. Walsh JW, Amendola MA, Konerding KF, Tisnado J, Hazra TA: Computed tomographic detection of pelvic and inguinal lymphnode metastases from primary and recurrent pelvic malignant disease. Radiology 2005; 137(1 pt 1):157–166.
- 86. Yang WT, Lam WW, Yu MY, Cheung TH, Metreweli C: Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR Am J Roentgenol 2000; 175: 759–766. Check Repeated 2 times
- 87. Park DH, Kim KH, Park SY, Lee BH, Choi CW, Chin SY. Diagnosis of recurrent uterine cervical cancer: computed tomography versus positron emission tomography. Kor J Radiol 2000; 1: 51-5.
- 88. Walsh JW, Goplerud DR: Prospective comparison between clinical and CT staging in primary cervical carcinoma. AJR Am J Roentgenol 1981; 137: 997–1003.
- 89. Grumbine FC, Rosenshein NB, Zerhouni EA, Siegelman SS: Abdominopelvic computed tomography in the preoperative evaluation of early cervical cancer. Gynecol Oncol 1981; 12: 286–290.
- 90. Brenner DE, Whitley NO, Prempree T, Villasanta U: An evaluation of the computed tomographic scanner for the staging of carcinoma of the cervix. Cancer 1982; 50: 2323–2328.
- 91. Bellomi M, Bonomo G, Landoni F, Villa G, Leon ME, Bocciolone L, et al: Accuracy of computed tomography and magnetic resonance imaging in the detection of lymph node involvement in cervix carcinoma. Eur Radiol 2005; 15: 2469–2474.
- 92. Choi SH, Kim SH, Choi HJ, Park BK, Lee HJ: Preoperative magnetic resonance imaging staging of uterine cervical carcinoma: results of prospective study. J Comput Assist Tomogr 2004; 28: 620–627.
- 93. Choi HJ, Roh JW, Seo SS, Lee S, Kim JY, Kim SK, et al: Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 2006; 106: 914–922.
- 94. Chung HH, Kang SB, Cho JY, Kim JW, Park NH, Song YS, et al: Can preoperative MRI accurately evaluate nodal and parametrial invasion in early stage cervical cancer? Jpn J Clin Oncol 2007; 37: 370–375.
- 95. Chung HH, Kang KW, Cho JY, Kim JW, Park NH, Song YS, et al: Role of magnetic resonance imaging and positron emission tomography/ computed tomography in preoperative lymph node detection of uterine cervical cancer. Am J Obstet Gynecol 2010; 203: 156.e1–e5.
- 96. Greco A, Mason P, Leung AW, Dische S, McIndoe GA, Anderson MC: Staging of carcinoma of the uterine cervix: MRI-surgical correlation. Clin Radiol 1989; 40: 401–405.
- 97. Hawighorst H, Schoenberg SO, Knapstein PG, Knopp MV, Schaeffer U, Essig M, et al: Staging of invasive cervical carcinoma and of pelvic lymph nodes by high resolution MRI with a phased-array coil in comparison with pathological findings. J Comput Assist Tomogr 1998; 22: 75–81.

- 98. Hawnaur JM, Johnson RJ, Buckley CH, Tindall V, Isherwood I: Staging, volume estimation and assessment of nodal status in carcinoma of the cervix: comparison of magnetic resonance imaging with surgical findings. Clin Radiol 1994; 49: 443–452.
- 99. Hertel H, Kohler C, Elhawary T, Michels W, Possover M, Schneider A: Laparoscopic staging compared with imaging techniques in the staging of advanced cervical cancer. Gynecol Oncol 2002; 87: 46–51.
- 100. Hricak H, Lacey CG, Sandles LG, Chang YC, Winkler ML, Stern JL: Invasive cervical carcinoma: comparison of MR imaging and surgical findings. Radiology 1988; 166: 623–631.
- 101. Janus CL, Mendelson DS, Moore S, Gendal ES, Dottino P, Brodman M: Staging of cervical carcinoma: accuracy of magnetic resonance imaging and computed tomography. Clin Imaging 1989; 13: 114–116.
- 102. Kim SH, Choi BI, Lee HP, Kang SB, Choi YM, Han MC, et al: Uterine cervical carcinoma: comparison of CT and MR findings. Radiology 1990; 175: 45–51.
- 103. Kim SH, Choi BI, Han JK, Kim HD, Lee HP, Kang SB, et al: Preoperative staging of uterine cervical carcinoma: comparison of CT and MRI in 99 patients. J Comput Assist Tomogr 1993; 17: 633–640.
- 104. Kim SH, Kim SC, Choi BI, Han MC: Uterine cervical carcinoma: evaluation of pelvic lymph node metastasis with MR imaging. Radiology 1994; 190: 807–811.
- 105. Lin G, Ho KC, Wang JJ, Ng KK, Wai YY, Chen YT, et al: Detection of lymph node metastasis in cervical and uterine cancers by diffusion- weighted magnetic resonance imaging at 3T. J Magn Reson Imaging 2008; 28: 128–135.
- 106. Sahdev A, Sohaib SA, Wenaden AE, Shepherd JH, Reznek RH: The performance of magnetic resonance imaging in early cervical carcinoma: a long-term experience. Int J Gynecol Cancer 2007; 17: 629–636.
- 107. Sheu MH, Chang CY, Wang JH, Yen MS: Preoperative staging of cervical carcinoma with MR imaging: a reappraisal of diagnostic accuracy and pitfalls. Eur Radiol 2001; 11: 1828–1833.
- 108. Yang WT, Lam WW, Yu MY, Cheung TH, Metreweli C: Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR Am J Roentgenol 2000; 175: 759– 766.
- 109. Yu KK, Hricak H, Subak LL, Zaloudek CJ, Powell CB: Preoperative staging of cervical carcinoma: phased array coil fast spin-echo versus body coil spin-echo T2-weighted MR imaging. AJR Am J Roentgenol 1998; 171: 707–711.
- 110. Waggenspack GA, Amparo EG, Hannigan EV: MR imaging of uterine cervical carcinoma. J Comput Assist Tomogr 1988; 12: 409–414.
- 111. Hatano K. Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 1999;45:639–44.
- 112. Weber TM, Sostman HD, Spritzer CE, Ballard RL, Meyer GA, Clark-Pearson DL, et al. Cervical carcinoma: determination of recurrent tumor extent versus radiation changes with MR imaging. Radiology 1995;194:135–9.

- 113. Chae BJ, Bae JS, Kang BJ, Kim SH, Jung SS, Song BJ. Positron emission tomography computed tomography in the detection of axillary lymph node metastasis in patients with early-stage breast cancer. Jpn J Clin Oncol 2009;39(5):284–9.
- 114. Champion L, Brain E, Giraudet AL, Le Stanc E, Wartski M, Edeline V, et al. Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient management. Cancer 2011; 117:1621–1629.
- 115. Chang HT, Hu C, Chiu YL, Peng NJ, Liu RS. Role of 2-[18F] fluoro-2-deoxy-Dglucose- positron emission tomography/computed tomography in the posttherapy surveillance of breast cancer. PLoS One 2014; 9:e115127.
- 116. Cochet A, David S, Moodie K, Drummond E, Dutu G, MacManus M, et al. The utility of 18F-FDG PET/CT for suspected recurrent breast cancer: impact and prognostic stratification. Cancer Imaging 2014; 14:13.
- 117. Dirisamer A, Halpern BS, Flory D, Wolf F, Beheshti M, Mayerhoefer ME, et al. Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol 2010;73(2):294–9.
- 118. Filippi V, Malamitsi J, Vlachou F, Laspas F, Georgiou E, Prassopoulos V, et al. The impact of FDG-PET/CT on the management of breast cancer patients with elevated tumor markers and negative or equivocal conventional imaging modalities. Nucl Med Commun 2011; 32:85–90.
- 119. Fueger BJ, Weber WA, Quon A, Crawford TL, len-Auerbach MS, Halpern BS, et al. Performance of 2-deoxy2-[F-18] fluoro-D-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol 2005;7(5):369–76.
- 120. Fuster D, Duch J, Paredes P, Velasco M, Munoz M, Santamaria G, et al. Preoperative staging of large primary breast cancer with [18F] fluoro deoxy glucose positron emission tomography/ computed tomography compared with conventional imaging procedures. J Clin Oncol 2008;26(29):4746–51.
- 121. Gallowitsch HJ, Kresnik E, Gasser J, Kumnig G, Igerc I, Mikosch P, et al. F-18 fluorodeoxyglucose positronemission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol 2003;38(5):250–6.
- 122. Goerres GW, Michel SCA, Fehr MK, Kaim AH, Steinert HC, Seifert B, et al. Follow-up of women with breast cancer: Comparison between MRI and FDG PET. Eur Radiol 2003; 13(7):1635–44.
- 123. Grassetto G, Fornasiero A, Otello D, Bonciarelli G, Rossi E, Nashimben O, et al. 18F-FDG-PET/CT in patients with breast cancer and rising Ca 15-3 with negative conventional imaging: a multicentre study. Eur J Radiol 2011; 80:828–833.
- 124. Haug AR, Schmidt GP, Klingenstein A, Heinemann V, Stieber P, Priebe M, et al. F-18- fluoro-2-deoxyglucose positron emission tomography/computed tomography in the follow up of breast cancer with elevated levels of tumor markers. J Comput Assist Tomogr 2007;31(4):629–34.
- 125. Kamel EM, Wyss MT, Fehr MK, von Schulthess GK, Goerres GW. [18F]-fluorodeoxyglucose positron emission tomography in patients with suspected recurrence of breast cancer. J Cancer Res Clin Oncol 2003;129(3):147–53.

- 126. Kim T-S, Moon WK, Lee D-S, Chung J-K, Lee MC, Youn Y-K, et al. Fluorodeoxyglucose positron emission tomography for detection of recurrent or metastatic breast cancer. World J Surg 2001;25(7):829–34.
- 127. Lonneux M, Borbath I, I, Berliere M, Kirkove C, Pauwels S. The place of whole-body pet fdg for the diagnosis of distant recurrence of breast cancer. Clin Positron Imaging 2000;3(2):45–9.
- 128. Manohar K, Mittal BR, Senthil R, Kashyap R, Bhattacharya A, Singh G. Clinical utility of F-18 FDG PET/CT in recurrent breast carcinoma. Nucl Med Commun 2012; 33:591–596.
- 129. Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK, et al. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 1998;39(3):431–5.
- 130. Murakami R, Kumita S, Yoshida T, Ishihara K, Kiriyama T, Hakozaki K, et al. FDGPET/ CT in the diagnosis of recurrent breast cancer. Acta Radiol 2012; 53:12–16.
- 131. Palomar A, Garcia Vicente AM, Talavera Rubio MP, Pilkington Woll JP, Poblete Garcia VM, Bellon Guardia ME, et al. Diagnostic and therapeutic impact of 18F-FDG-PET/CT in patients with suspected breast cancer recurrence. Rev Esp Med Nucl 2010; 29:100–108.
- 132. Schmidt GP, Baur-Melnyk A, Haug A, Heinemann V, Bauerfeind I, Reiser MF, et al. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol 2008;65(1):47–58.
- 133. Veit-Haibach P, Antoch G, Beyer T, Stergar H, Schleucher R, Hauth EA, et al. FDG-PET/CT in restaging of patients with recurrent breast cancer: possible impact on staging and therapy. Br J of Radiol 2007;80(955):508– 15.
- 134. Veronesi U, De CC, Galimberti VE, Fernandez JR, Rotmensz N, Viale G, et al. A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 2007;18(3):473–8.
- 135. Wolfort RM, Li BDL, Johnson LW, Turnage RH, Lilien D, Ampil F, et al. The role of whole-body fluorine-18-FDG positron emission tomography in the detection of recurrence in symptomatic patients with stages II and III breast cancer. World J Surg 2006;30(8):14227.
- 136. Mohamed Shawky, Zeinab Abd Elaziz Ali, Dina Hamdy Hashem and Mohamed Houseni Role of positronemission tomography/ computed tomography (PET/CT) in breast cancer Egyptian Journal of Radiology and Nuclear Medicine (2020) 51:125.
- 137. Abe K, Sasaki M, Kuwabara Y, Koga H, Baba S, Hayashi K, et al. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 2005;19(7):573–9.
- 138. Aide N, Huchet V, Switsers O, Heutte N, Delozier T, Hardouin A, et al. Influence of CA 15–3 blood level and doubling time on diagnostic performances of 18F-FDG PET in breast cancer patients with occult recurrence. Nucl Med Commun 2007;28(4):267–72.
- 139. Avril N, Dose J, Janicke F, Ziegler S, Romer W, Weber W, et al. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. J Natl Cancer Inst 1996;88(17):1204–9.

- 140. Barranger E, Grahek D, Antoine M, Montravers F, Talbot JN, Uzan S. Evaluation of fluorodeoxyglucose positron emission tomography in the detection of axillary lymph node metastases in patients with early-stage breast cancer. Ann Surg Oncol 2003;10(6):622–7.
- 141. Bender H, Kirst J, Palmedo H, Schomburg A, Wagner U, Ruhlmann J, Biersack HJ. Value of 18fluorodeoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res 1997; 17 (3B):1687–1692
- 142. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, et al. Positron tomographic assessment of estrogen receptors in breast cancer: Comparison with FDG-PET and in vitro receptor assays. J Nucl Med 1995;36(10):1766–74.
- 143. Eubank WB, Mankoff D, Bhattacharya M, Gralow J, Linden H, Ellis G, et al. Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. AJR Am J Roentgenol 2004;183(2):479–86.
- 144. Fehr MK, Hornung R, Varga Z et al (2004) Axillary staging using positron emission tomography in breast cancer patients qualifying for sentinel lymph node biopsy. Breast J 10:89–93.
- 145. Gil-Rendo A, Zornoza G, Garcia-Velloso MJ et al (2006) Fluorodeoxyglucose positron emission tomography with sentinel lymph node biopsy for evaluation of axillary involvement in breast cancer. Br J Surg 93:707–712.
- 146. Greco M, Crippa F, Agresti R et al (2001) Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-D-glucose-positron emission tomography: clinical evaluation and alternative management. J Natl Cancer Inst 93:630–635.
- 147. Guillemard S, Eberle Pouzeratte MC, Lamy P-J, Romieu G, Rossi M, Artus JC. 18FDG PET/CT and CA 15–3 in the early diagnosis of recurrent breast cancer. [French]. Méd Nucl 2006;30(4):209–16.
- 148. Guller U, Nitzsche EU, Schirp U et al (2002) Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-D-glucose: not yet!. Breast Cancer Res Treat 71:171– 173.
- 149. Hathaway PB, Mankoff DA, Maravilla KR, Austin-Seymour MM (1999) Value of combined FDG PET and MR imaging in the evaluation of suspected recurrent local-regional breast cancer: preliminary experience. Radiology 210(3):807–814.
- 150. Inoue T, Yutani K, Taguchi T, Tamaki Y, Shiba E, Noguchi S, et al. Preoperative evaluation of prognosis in breast cancer patients by [(18)F]2-Deoxy-2-fluoro-D-glucose-positron emission tomography. J Cancer Res Clin Oncol 2004;130(5):273–8.
- 151. Kim T-S, Moon WK, Lee D-S, Chung J-K, Lee MC, Youn Y-K, et al. Fluorodeoxyglucose positron emission tomography for detection of recurrent or metastatic breast cancer. World J Surg 2001;25(7):829–34.
- 152. Lin W-Y, Tsai S-C, Cheng K-Y, Yen R-F, Kao C-H. Fluorine-18 FDG-PET in detecting local recurrence and distant metastases in breast cancer Taiwanese experiences. Cancer Invest 2002;20(5–6):725–9.
- 153. Noh DY, Yun IJ, Kim JS, Kang HS, Lee DS, Chung JK, et al. Diagnostic value of positron emission tomography for detecting breast cancer. World J Surg 1998;22(3):223–8.

- 154. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, et al. Whole-body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Medi Commun 2001;22(8):875–9.
- 155. Piperkova E, Raphael B, Altinyay ME, Castellon I, Libes R, Sandella N, et al. Impact of PET/CT in comparison with same day contrast enhanced CT in breast cancer management. Clin Nucl Med 2007;32(6):429–34
- 156. Raileanu I, Grahek D, Montravers F, Kerrou KAide N, Younsi N, et al. Comparison of [18F]fluorodeoxyglucose positron emission tomography and technetium bisphosphonate bone scintigraphy to detect bone metastases in patients with breast cancer. [French]. Méd Nucl 2004;28(7):297–303.
- 157. Siggelkow W, Zimny M, Faridi A, Petzold K, Buell U, Rath W. The value of positron emission tomography in the follow-up for breast cancer. Anticancer Res 2003;23(2C):1859–67.
- 158. Smith IC, Ogston KN, Whitford P, Smith FW, Sharp P, Norton M, et al. Staging of the axilla in breast cancer: Accurate in vivo assessment using positron emission tomography with 2-(fluorine- 18)-fluoro-2-deoxy-Dglucose. Ann Surg 1998;228(2):220–7.
- 159. Utech CI, Young CS, Winter PF (1996) Prospective evaluation of fluorine-18 fluoro deoxy glucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23:1588–1593.
- 160. Yang SN, Liang JA, Lin FJ, Kao CH, Lin CC, Lee CC, et al. Comparing whole body (18)F-2- deoxy glucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 2002;128(6):325–8.
- 161. Chung A, Liou D, Karlan S et al (2006) Preoperative FDG-PET for axillary metastases in patients with breast cancer. Arch Surg 141:783–788.
- 162. Crowe JP Jr, Adler LP, Shenk RR et al (1994) Positron emission tomography and breast masses: comparison with clinical, mammographic, and pathological findings. Ann Surg Oncol 1:132–140.
- 163. Hagay C, Cherel PJ, de Maulmont CE, Plantet MM (1996) Contrast enhanced CT: value for diagnosing local breast cancer recurrence after conservative treatment. Radiology 200(3):631–638.
- 164. Kumar R, Zhuang H, Schnall M et al (2006) FDG PET positive lymph nodes are highly predictive of metastasis in breast cancer. Nucl Med Commun 27:231–236
- 165. Lovrics PJ, Chen V, Coates G et al (2004) A prospective evaluation of positron emission tomography scanning, sentinel lymph node biopsy, and standard axillary dissection for axillary staging in patients with early stage breast cancer. Ann Surg Oncol 11:846–853.
- 166. Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O. The role of FDGPET/ CT in suspected recurrence of breast cancer. Cancer 2006; 107:2545–2551.
- 167. Schirrmeister H, Kuhn T, Guhlmann A et al (2001) Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 28:351– 358.
- 168. Ternier F, Houvenaeghel G, Lecrivain F, Brigand BL (2006) Computed tomography in suspected local breast cancer recurrence. Breast Cancer Res Treat 100(3):247–254.

- 169. van der Hoeven JJ, Hoekstra OS, Comans EF et al (2002) Determinants of diagnostic performance of [F-18]fluorodeoxyglucose positron emission tomography for axillary staging in breast cancer. Ann Surg 236:619– 624.
- 170. Wahl RL, Siegel BA, Coleman RE et al (2004) Prospective multi center study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 22:277–285.
- 171. Yang WT, Le-Petross HT, Macapinlac H et al (2008) Inflammatory breast cancer: PET/CT, MRI, mammography, and sonography findings. Breast Cancer Res Treat 109:417–426.
- 172. Yutani K, Tatsumi M, Shiba E et al (1999) Comparison of dualhead coincidence gamma camera FDG imaging with FDG PET in detection of breast cancer and axillary lymph node metastasis. J Nucl Med 40:1003–1008
- 173. Zornoza G, Garcia-Velloso MJ, Sola J et al (2004) 18F-FDG PET complemented with sentinel lymph node biopsy in the detection of axillary involvement in breast cancer. Eur J Surg Oncol 30:15–19.
- 174. Belli P, Pastore G, Romani M, Terribile D, Canade` A (2002) Role of magnetic resonance imaging in the diagnosis of recurrence after breast conserving therapy. Rays 27(4):241–257.
- 175. Bender H, Kirst J, Palmedo H, Schomburg A, Wagner U, Ruhlmann J, Biersack HJ. Value of 18fluorodeoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res 1997; 17 (3B):1687–1692
- 176. Drew PJ, Kerin MJ, Turnbull LW, Imrie M (1998) Routine screening for local recurrence following breastconserving therapy for cancer with dynamic contrast-enhanced magnetic resonance imaging of the breast. Ann Surg Oncol 5(3):265–270.
- 177. Gilles R, Guinebretie`re JM, Shapeero LG, Lesnik A (1993) Assessment of breast cancer recurrence with contrast-enhanced subtraction MR imaging: preliminary results in 26 patients. Radiology 188(2):473–478.
- 178. Harada T, Tanigawa N, Matsuki M, Nohara T, Narabayashi I. Evaluation of lymph node metastases of breast cancer using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. Eur J Radiol 2007;63(3):401–7.
- 179. Kimura K, Tanigawa N, Matsuki M, et al. High-resolution MR lymphography using ultrasmall superparamagnetic iron oxide (USPIO) in the evaluation of axillary lymph nodes in patients with early stage breast cancer: preliminary results. Breast Cancer 2010;17(4):241e6.
- 180. Melani E, Sardanelli F, Ottonello C, Parodi RC (1995) Magnetic resonance mammography in suspected tumor recurrences. Radiol Med (Torino) 89(3):219–224.
- 181. Memarsadeghi M, Riedl CC, Kaneider A, Galid A, Rudas M, Matzek W, et al. Axillary lymph node metastases in patients with breast carcinomas: assessment with nonenhanced versususpio-enhanced MR imaging. Radiology 2006;241(2):367–77.
- 182. Michel SC, Keller TM, Frohlich JM, Fink D, Caduff R, Seifert B, et al. Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 2002;225(2):527–36.

- 183. Mumtaz H, Hall-Craggs MA, Davidson T, Walmsley K, Thurell W, Kissin MW, et al. Staging of symptomatic primary breast cancer with MR imaging. AJR 1997;169(2):417–24.
- 184. Murray AD, Staff RT, Redpath TW et al (2002) Dynamic contrast enhanced MRI of the axilla in women with breast cancer: comparison with pathology of excised nodes. Br J Radiol 75:220–228.
- 185. Muu⁻⁻ ller RD, Barkhausen J, Sauerwein W, Langer R (1998) Assessment of local recurrence after breastconserving therapy with MRI. J Comput Assist Tomogr 22(3):408–412.
- 186. Qayyum A, MacVicar AD, Padhani AR, Revell P (2000) Symptomatic brachial plexopathy following treatment for breast cancer: utility of MR imaging with surface-coil techniques. Radiology 214(3):837–842.
- 187. Stadnik TW, Everaert H, Makkat S, Sacre R, Lamote J, Bourgain C. Breast imaging. Preoperative breast cancer staging: comparison of USPIO-enhanced MR imaging and 18F-fluorodeoxyglucose (FDC) positron emission tomography (PET) imaging for axillary lymph node staging – initial findings. Eur Radiol 2006;16(10):2153– 60.
- 188. Riebe E, Gu"nther K, Schulz K, Ko"hler G (2007) Recurrent disease after breast preserving therapy (BPT) and radiation therapy for breast cancer—diagnostic yield of palpation, mammography and ultrasonography. Ultraschall Med 28(4):394–400.
- 189. Abgral R, Querellou S, Potard G, et al. Does 18FFDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med 2009; 50:24–29.
- 190. Babin E, Desmonts C, Hamon M, Benateau H, Hitier M. PET/ CT for assessing mandibular invasion by intraoral squamous cell carcinomas. Clinical Otolaryngol 2008;33(1):47–51.
- 191. Cetin B, et al. The role of positron emission tomography with 18F-fluorodeoxyglucose in nodal staging of clinical and radiological N0 head and neck cancers. Eur Arch Otorhino laryngol 2013;270(8):2307-13.
- 192. Chan SC, Ng SH, Chang JT, et al. Advantages and pitfalls of 18F-fluoro-2-deoxy-D-glucose positron emission tomography in detecting locally residual or recurrent nasopharyngeal carcinoma: comparison with magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2006; 33:1032–1040.
- 193. Chauhan A, Kulshrestha P, Kapoor BS, Singh H, Jacob MJ, Patel M, et al. Comparison of PET/CT with conventional imaging modalities (USG, CECT) in evaluation of N0 neck in head and neck squamous cell carcinoma. Med J Armed Forces India 2012;68(4):322–7.
- 194. Fakhry N, Lussato D, Jacob T, Giorgi R, Giovanni A, Zanaret M. Comparison between PET and PET/CT in recurrent head and neck cancer and clinical implications. Eur Arch Otorhinolaryngol 2007; 264:531–538.
- 195. Ghanooni R, Delpierre I, Magremanne M, et al. 18F-FDG PET/CT and MRI in the follow-up of head and neck squamous cell carcinoma. Contrast Media Mol Imaging 2011; 6:260–266.
- 196. Gordin A, Daitzchman M, Doweck I, Yefremov N, Golz A, Keidar Z, et al. Fluorodeoxyglucose-positron emission tomography/ computed tomography imaging in patients with carcinoma of the larynx: diagnostic accuracy and impact on clinical management. Laryngoscope 2006;116(2):273–8.

- 197. Gordin A, Golz A, Keidar Z, Daitzchman M, Bar-Shalom R, Israel O. The role of FDG-PET/CT imaging in head and neck malignant conditions: impact on diagnostic accuracy and patient care. Otolaryngol Head Neck Surg 2007;137(1):130–7.
- 198. Goshen E, Yahalom R, Talmi YP, Rotenberg G, Oksman Y, Zwas ST. The role of gamma-PET in the evaluation of patients with recurrent squamous cell cancer of the head and neck. Int J Oral Maxillofac Surg 2005; 34:386– 390
- 199. Ho AS, Tsao GJ, Chen FW, et al. Impact of positron emission tomography/computed tomography surveillance at 12 and 24 months for detecting head and neck cancer recurrence. Cancer 2013; 119:1349–1356.
- 200. Jeong HS, Baek CH, Son YI, Chung MK, Lee DK, Choi JY, et al. Use of integrated 18F-FDG PET/CT to improve the accuracy of initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma. Head Neck 2007;29(3):203–10.
- 201. Kao CH, ChangLai SP, Chieng PU, Yen RF, Yen TC. Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with 18-fluoro-2-deoxyglucose positron emission tomography and comparison with computed tomography. J Clin Oncol 1998; 16:3550–3555.
- 202. Kim SY, Roh JL, Yeo NK, Kim JS, Lee JH, Choi SH, et al. Combined 18F-fluorodeoxyglucose-positron emission tomography and computed tomography as a primary screening method for detecting second primary cancers and distant metastases in patients with head and neck cancer. Ann Oncol 2007; 18(10):1698–703.
- 203. Kim D-W, Park S-A, Kim CG. Detecting the recurrence of gastric cancer after curative resection: comparison of FDG PET/CT and contrast-enhanced abdominal CT. J Korean Med Sci. 2011; 26:875Y880.
- 204. Kim JW, Roh JL, Kim JS, et al. 18F-FDG PET/CT surveillance at 3–6 and 12 months for detection of recurrence and second primary cancer in patients with head and neck squamous cell carcinoma. Br J Cancer 2013; 109:2973–2979
- 205. Krabbe CA, et al. FDG PET in oral and oropharyngeal cancer. Value for confirmation of N0 neck and detection of occult metastases. Oral Oncol 2008;44(1):31-6.
- 206. Krabbe CA, Pruim J, Dijkstra PU, et al. 18F-FDG PET as a routine posttreatment surveillance tool in oral and oropharyngeal squamous cell carcinoma: a prospective study. J Nucl Med 2009; 50:1940–1947.
- 207. Kubota K, Yokoyama J, Yamaguchi K, et al. FDG-PET delayed imaging for the detection of head and neck cancer recurrence after radio-chemotherapy: comparison with MRI/CT. Eur J Nucl Med Mol Imaging 2004; 31:590–595.
- 208. Lee JC, Kim JS, Lee JH, et al. F-18 FDG-PET as a routine surveillance tool for the detection of recurrent head and neck squamous cell carcinoma. Oral Oncol 2007; 43:686–692.
- 209. Lee HJ, et al. 18F-FDG PET-CT as a supplement to CT/MRI for detection of nodal metastasis in hypopharyngeal SCC with palpably negative neck. Laryngoscope 2015;125(7):1607-12.
- 210. Li P, Zhuang H, Mozley PD, et al. Evaluation of recurrent squamous cell carcinoma of the head and neck with FDG positron emission tomography. Clin Nucl Med 2001; 26:131–135

- 211. Nahmias C, Carlson ER, Duncan LD, Blodgett TM, Kennedy J, Long MJ, et al. Positron emission tomography/computerized tomography (PET/CT) scanning for preoperative staging of patients with oral/head and neck cancer. J Oral Maxillofac Surg 2007;65(12):2524–35.
- 212. Nakamura S, Toriihara A, Okochi K, Watanabe H, Shibuya H, Kurabayashi T. Optimal timing of post-treatment [18F]fluorodeoxyglucose-PET/CT for patients with head and neck malignancy. Nucl Med Commun 2013; 34:162–167.
- 213. Ng SH, Chan SC, Yen TC, et al. Comprehensive imaging of residual/recurrent nasopharyngeal carcinoma using whole-body MRI at 3 T compared with FDG-PET-CT. Eur Radiol 2010; 20:2229–2240.
- 214. Paidpally V, Tahari AK, Lam S, et al. Addition of 18F-FDG PET/CT to clinical assessment predicts overall survival in HNSCC: a retrospective analysis with follow-up for 12 years. J Nucl Med 2013; 54:2039–2045.
- 215. Robin P, Abgral R, Valette G, et al. Diagnostic performance of FDG PET/CT to detect subclinical HNSCC recurrence 6 months after the end of treatment. Eur J Nucl Med Mol Imaging 2015; 42:72–78.
- 216. Roh JL, Yeo NK, Kim JS, Lee JH, Cho KJ, Choi SH, et al. Utility of 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography and positron emission tomography/computed tomography imaging in the preoperative staging of head and neck squamous cell carcinoma. Oral Oncol 2007;43(9):887–93.
- 217. Roh JL, et al. 18F fluorodeoxyglucose PET/CT in head and neck squamous cell carcinoma with negative neck palpation findings: a prospective study. Radiology 2014;271(1):153-61.
- 218. Salaun PY, Abgral R, Querellou S, et al. Does 18fluoro-fluorodeoxyglucose positron emission tomography improve recurrence detection in patients treated for head and neck squamous cell carcinoma with negative clinical follow-up? Head Neck 2007; 29:1115–1120.
- 219. Schroeder U, et al. Is there a need for positron emission tomography imaging to stage the N0 neck in T1-T2 squamous cell carcinoma of the oral cavity or oropharynx? Ann Otol Rhinol Laryngol 2008;117(11):854-63.
- 220. Seitz O, Chambron-Pinho N, Middendorp M, et al. 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MRI imaging and validation with surgical specimen. Neuroradiology. 2009;51(10):677–686.
- 221. Sohn B, et al. Is there an additive value of 18 F-FDG PET-CT to CT/MRI for detecting nodal metastasis in oropharyngeal squamous cell carcinoma patients with palpably negative neck? Acta Radiol 2016;57(11):1352-9.
- 222. Stoeckli SJ, et al. Is there a role for positron emission tomography with 18Ffluorodeoxyglucose in the initial staging of nodal negative oral and oropharyngeal squamous cell carcinoma. Head Neck 2002;24(4):345-9.
- 223. Stokkel MP, Terhaard CH, Hordijk GJ, van Rijk PP. The detection of local recurrent head and neck cancer with fluorine-18 fluorodeoxyglucose dualhead positron emission tomography. Eur J Nucl Med 1999; 26:767–773.
- 224. Tsai MH, Shiau YC, Kao CH, Shen YY, Lin CC, Lee CC. Detection of recurrent nasopharyngeal carcinomas with positron emission tomography using 18-fluoro-2-deoxyglucose in patients with indeterminate magnetic resonance imaging findings after radiotherapy. J Cancer Res Clin Oncol 2002; 128:279–282.

- 225. Wierzbicka M, Popko M, Piskadło K, et al. Comparison of positron emission tomography/computed tomography imaging and ultrasound in surveillance of head and neck cancer: the 3-year experience of the ENT department in Poznan. Rep Pract Oncol Radiother 2011; 16:184–188.
- 226. Wong RJ, Lin DT, Schöder H, et al. Diagnostic and prognostic value of [18F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 2002; 20:4199–4208.
- 227. Yamaga E, et al. Clinical usefulness of 2-deoxy-2-[18F] fluoro-d-glucose-positron emission tomography/computed tomography for assessing early oral squamous cell carcinoma (cT1-2N0M0). Jpn J Clin Oncol 2018.
- 228. Yen RF, Hung RL, Pan MH, et al. 18-Fluoro-2-deoxyglucose positron emission tomography in detecting residual/recurrent nasopharyngeal carcinomas and comparison with magnetic resonance imaging. Cancer 2003; 98:283–287
- 229. Zundel MT, Michel MA, Schultz CJ, et al. Comparison of physical examination and fluorodeoxyglucose positron emission tomography/computed tomography 4–6 months after radiotherapy to assess residual headand-neck cancer. Int J Radiat Oncol Biol Phys 2011; 81:e825–e832.
- 230. Chang JT, Chan SC, Yen TC, et al. Nasopharyngeal carcinoma staging by (18) F fluorodeoxyglucose positron emission tomography. International Journal of Radiation Oncology, Biology, Physics 2005;62:501–7.
- 231. Liu FY, Chang JT, Wang HM, et al. [18F] fluorodeoxyglucose positron emission tomography is more sensitive than skeletal scintigraphy for detecting bone metastasis in endemic nasopharyngeal carcinoma at initial staging. Journal Clinical Oncology 2006; 24:599–604.
- 232. Shu-Hang Ng, Tzu-Chen Yen, Joseph Tung-Chieh Chang, Sheng-Chieh Chan, Sheung-Fat Ko, Hung-Ming Wang, Li-Yu Lee, Chung-Jan Kang, Alex Mun-Ching Wong, and Chun-Ta Liao. Prospective Study of [18F] Fluorodeoxyglucose Positron Emission Tomography and Computed Tomography and Magnetic Resonance Imaging in Oral Cavity Squamous Cell Carcinoma with Palpably Negative Neck. J Clin Oncol 24:4371-4376. © 2006.
- 233. Adams S, Baum RP, Stuckensen T, Bitter K, Hör G. Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med. 1998;25(9):1255–1260.
- 234. Akoğlu E, Dutipek M, Bekiş R, et al. Assessment of cervical lymph node metastasis with different imaging methods in patients with head and neck squamous cell carcinoma. J Otolaryngol. 2005;34(6):384–394.
- 235. Braams JW, Pruim J, Freling NJ, et al. Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med. 1995;36(2):211–216.
- 236. Curtin HD, Ishwaran H, Mancuso AA, et al. Comparison of CT and MRI imaging in staging of neck metastases. Radiology. 1998;207(1): 123–130.
- 237. Dammann F, Horger M, Mueller-Berg M, et al. Rational diagnosis of squamous cell carcinoma of the head and neck region: comparative evaluation of CT, MRI, and 18FDG PET. AJNR Am J Roentgenol. 2005;184:1326– 1331.

- 238. Eida S, Sumi M, Yonetsu K, et al. Combination of helical CT and Doppler sonography in the follow-up of patients with clinical N0 stage neck disease and oral cancer. AJNR Am J Neuroradiol. 2003;24:312–318.
- 239. Fan WY, Sun JW. Evaluation of enhanced CT on hte cervical lymph node metastasis of head and neck neoplasms. Chinese Journal of Clinical Healthcare [Article in Chinese]. 2006;9:236–237.
- 240. Hafidh MA, Lacy PD, Hughes JP, Duffy G, Timon CV. Evaluation of the impact of Akoğlu E, Dutipek M, Bekiş R, et al. Assessment of cervical lymph node metastasis with different imaging methods in patients with head and neck squamous cell carcinoma. J Otolaryngol. 2005;34(6):384–394.
- 241. Kau RJ, Alexiou C, Laubenbacher C, et al. Lymph node detection of head and neck squamous cell carcinomas by positron emission tomography with Fluorodeoxyglucose F 18 in a routine clinical setting. Arch Otolaryngol Head Neck Surg. 1999;125(12):1322–1328.
- 242. Ke Z, Liu M, Liu Y, et al. Diagnostic value of 18F-FDG PET/CT in the detection of the cervical lymph nodes metastasis [Article in Chinese]. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2006;20:243–245.
- 243. LU HJ, Lydia RIBERE BRUGEL, Emmanue IITT, et al. The comparison of PET/CT with contrast enhanced CT in the assessment of cervical lymph nodes in head and neck cancer [Article in Chinese]. Modern Oncology. 2007;15:1555–1557.
- 244. McGuirt W, Williams DW 3rd, Keyes JW Jr, et al. A comparative diagnostic study of head and neck nodal metastases using positron emission tomography. Laryngoscope. 1995;105(4 Pt 1): 373–375.
- 245. Paulus P, Sambon A, Vivegnis D, et al. 18FDG-PET for the assessment of primary head and neck tumors: clinical, computed tomography, and histopathological correlation in 38 patients. Laryngoscope. 1998; 108:1578–1583.
- 246. Peters TT, Castelijns JA, Ljumanovic R, et al. Diagnostic value of CT and MRI in the detection of paratracheal lymph node metastasis. Oral Oncol. 2012;48:450–455.
- 247. Wu YQ, Fan XC, Deng Y, et al. Value of Spiral CT Scan on Cervical Lymph node Metastasis of Laryngo and Hypolaryngo carcinoma [Article in Chinese]. Hei Long Jiang Medical Journal. 34:761–763.
- 248. Yoon DY, Hwang HS, Chang SK, et al. CT, MRI, US, 18F-FDG PET/CT, and their combined use for the assessment of cervical lymph node metastases in squamous cell carcinoma of the head and neck. Eur Radiol. 2009;19(3):634–642.
- 249. Ding ZX, Liang BL, Shen J, et al. Magnetic resonance imaging diagnosis of cervical lymph node metastasis from lingual squamous cell carcinoma [Article in Chinese]. Ai Zheng. 2005;24:199–203.
- 250. Gu YF, Qiu WL, Luo JC. Comparison on MRI and CT for Diagnosing Cervical Lymph Node Metastasis [Article in Chinese]. Journal of Shang Hai Tie Dao University. 2000;21:33–36.
- 251. Hao SP, Ng SH. Magnetic resonance imaging versus clinical palpation in evaluating cervical metastasis from head and neck cancer. Otolaryngol Head Neck Surg. 2000;123(3):324–327.
- 252. Laubenbacher C, Saumweber D, Wagner-Manslau C, et al. Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med. 1995; 36(10):1747–1757.

- 253. Nakamoto Y, Tamai K, Saga T, et al. Clinical value of image fusion from MRI and PET in patients with head and neck cancer. Mol Imaging Biol. 2009;11(1):46–53.
- 254. Olmos RA, Koops W, Loftus BM, et al. Correlative 201Tl SPECT, MRI and ex vivo 201Tl uptake in detecting and characterizing cervical lymphadenopathy in head and neck squamous cell carcinoma. J Nucl Med. 1999;40:1414–1419.
- 255. Van den Brekel MW, Castelijns JA, Croll GA, et al. Magnetic resonance imaging vs palpation of cervical lymph node metastasis. Arch Otolaryngol Head Neck Surg. 1991;117(6):663–673.
- 256. Wang Q, Takashima S, Fukuda H, et al. Detection of medullary thyroid carcinoma and regional lymph node metastases by magnetic resonance imaging. Arch Otolaryngol Head Neck Surg. 1999;125(8):842–848.
- 257. Wide JM, White DW, Woolgar JA, et al. Magnetic resonance imaging in the assessment of cervical nodal metastasis in oral squamous cell carcinoma. Clin Radiol. 1999;54(2):90–94.
- 258. Wilson GR, McLean NR, Chippindale A, et al. The role of MRI scanning in the diagnosis of cervical lymphadenopathy. Br J Plast Surg. 1994; 47(3):175–179.
- 259. Yuan YG, Han DM, Fan EZ, et al. [The evaluation of cervical lymph node metastasis of laryngeal cancer using magnetic resonance imaging (MRI)]. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2000;14(10):449–451. Chinese.
- 260. Dirisamer A, Schima W, Heinisch M, et al. Detection of histologically proven peritoneal carcinomatosis with fused 18F-FDG-PET/MDCT. Eur J Radiol. 2009; 69:536Y541.
- 261. KawanakaY, Kitajima K, Fukushima K et al (2016) Added value of pre-treatment ¹⁸F-FDG PET/CT for staging of advanced gastric cancer: comparison with contrast-enhanced MDCT. Eur J Radiol 85:989–995.
- 262. Satoh Y, Ichikawa T, Motosugi U, et al. Diagnosis of peritoneal dissemination: comparison of 18F-FDG PET/CT, diffusion-weighted MRI, and contrastenhanced MDCT. AJR Am J Roentgenol. 2011;196:447Y453.
- 263. Soussan M, Des Guetz G, Barrau V, et al. Comparison of FDG-PET/CT and MR with diffusion-weighted imaging for assessing peritoneal carcinomatosis from gastrointestinal malignancy. Eur Radiol. 2012;22:1479Y1487.
- 264. Chen J, Cheong JH, Yun MJ et al (2005) Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer 103:2383–2390.
- 265. Kim D-W, Park S-A, Kim CG. Detecting the recurrence of gastric cancer after curative resection: comparison of FDG PET/CT and contrast-enhanced abdominal CT. J Korean Med Sci. 2011;26:875Y880.
- 266. Lim JS, Kim MJ, Yun MJ, et al. Comparison of CT and 18F-FDG PET for detecting peritoneal metastasis on the preoperative evaluation for gastric carcinoma. Korean J Radiol. 2006;7:249Y256.
- 267. De Potter T, Flamen P, Van Cutsem E, et al. Whole-body PETwith FDG for the diagnosis of recurrent gastric cancer. Eur J Nucl Med Mol Imaging. 2002; 29:525Y529.
- 268. Duhr CD, Kenn W, Kickuth R, Kerscher AG, Germer CT, Hahn D, Pelz JO (2011) Optimizing of preoperative computed tomography for diagnosis in patients with peritoneal carcinomatosis. World J Surg Oncol 9:171.

- 269. Giganti F, Orsenigo E, Arcidiacono PG, et al. Preoperative locoregional staging of gastric cancer: is there a place formagnetic resonance imaging? Prospective comparison with EUS and multidetector computed tomography. Gastric Cancer 2016;19:216–25.
- 270. Karakoyun R, Demirci E, Karakoyun M, et al. Reliability of MDCT, with MPR and hydro-CT technique, in resectability and lymphnode staging of gastric cancer. Minerva Chir 2014;69:129–40.
- 271. Kim D-W, Park S-A, Kim CG. Detecting the recurrence of gastric cancer after curative resection: comparison of FDG PET/CT and contrast-enhanced abdominal CT. J Korean Med Sci. 2011;26:875Y880.
- 272. Kim SJ, Kim HH, Kim YH et al (2009) Peritoneal metastasis: detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer. Radiology 253:407–415.
- 273. Fujii S, Matsusue E, Kanasaki Yet al (2008) Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol 18:18–23.
- 274. J. T. Annema, J. P. Van Meerbeeck, R. C. Rintoul et al., "Mediastinoscopy vs endosonographic for mediastinal nodal staging of lung cancer: a randomized trial," Journal of the American Medical Association, vol. 304, no. 20, pp. 2245–2252, 2010.
- 275. F. J. F. Herth, M. Krasnik, N. Kahn, R. Eberhardt, and A. Ernst, "Combined endoscopic-endobronchial ultrasound guided fine-needle aspiration of mediastinal lymph nodes through a single bronchoscope in 150 patients with suspected lung cancer," Chest, vol. 138, no. 4, pp. 790–794, 2010.
- 276. Hwangbo B, Kim SK, Lee HS, et al. Application of endobronchial ultrasound-guided transbronchial needle aspiration following integrated PET/CT in mediastinal staging of potentially operable non-small cell lung cancer. Chest 2009; 135:1280 –1287.
- 277. H. J.Kang, B. Hwangbo, G.-K. Lee et al., "EBUS-centred versus EUS-centred mediastinal staging in lung cancer: a randomised controlled trial," Thorax, vol. 69, no. 3, pp. 261–268, 2014.
- 278. K. J. Lee, G. Y. Suh, M. P. Chung et al., "Combined endobronchial and transoesophageal approach of an ultrasound bronchoscope for mediastinal staging of lung cancer," PLoS ONE, vol. 9, no. 3, Article ID e91893, 2014.
- 279. M. Liberman, J. Sampalis, A. Duranceau, V. Thiffault, R. Hadjeres, and P. Ferraro, "Endosonographic mediastinal lymph node staging of lung cancer," Chest, vol. 146, no. 2, pp. 389–397, 2014.
- 280. R. Ohnishi, I. Yasuda, T. Kato et al., "Combined endobronchial and endoscopic ultrasound-guided fine needle aspiration for mediastinal nodal staging of lung cancer," Endoscopy, vol. 43, no. 12, pp. 1082–1089, 2011.
- 281. M. Oki, H. Saka, M. Ando, C. Kitagawa, Y. Kogure, and Y. Seki, "Endoscopic ultrasound-guided fine needle aspiration and endobronchial ultrasound-guided transbronchial needle aspiration: are two better than one in mediastinal staging of non-small cell lung cancer?" The Journal of Thoracic and Cardiovascular Surgery, vol. 148, no. 4, pp. 1169–1177, 2014.
- 282. M. B.Wallace, J.M. S. Pascual, M. Raimondo et al., "Minimally invasive endoscopic staging of suspected lung cancer," The Journal of the American Medical Association, vol. 299, no. 5, pp. 540–546, 2008.
- 283. Schumacher T, Brink I, Mix M, Reinhardt M, Herget G, Digel W, et al. FDGPET imaging for the staging and follow-up of small cell lung cancer. Eur J Nucl Med 2001; 28:483–488.

- 284. Hauber HP, Bohuslavizki KH, Lund CH, Fritscher-Ravens A, Meyer A, Pforte A. Positron emission tomography in the staging of small-cell lung cancer: a preliminary study. Chest 2001; 119:950–954.
- 285. Chin R Jr, McCain TW, Miller AA, Dunagan DP, Acostamadiedo J, Douglas Case L, et al. Whole body FDG-PET for the evaluation and staging of small cell lung cancer: a preliminary study. Lung Cancer 2002; 37:1–6.
- 286. Kamel EM, Zwahlen D, Wyss MT, Stumpe KD, von Schulthess GK, Steinert HC. Whole-body (18)F-FDG PET improves the management of patients with small cell lung cancer. J Nucl Med 2003; 44:1911–1917.
- 287. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [18F] FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging 2003; 30:78–84.
- 288. Bradley JD, Dehdashti F, Mintun MA, Govindan R, Trinkaus K, Siegel BA. Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J Clin Oncol 2004; 22:3248–3254.
- 289. Brink I, Schumacher T, Mix M, Ruhland S, Stoelben E, Digel W, et al. Impact of [18F] FDG-PET on the primary staging of small-cell lung cancer. Eur J Nucl Med Mol Imaging 2004; 31:1614–1620.
- 290. Kut V, Spies W, Spies S, Gooding W, Argiris A. Staging and monitoring of small cell lung cancer using [18F] fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET). Am J Clin Oncol 2007; 30:45–50.
- 291. Fischer BM, Mortensen J, Langer SW, Loft A, Berthelsen AK, Petersen BI, et al. A prospective study of PET/CT in initial staging of small-cell lung cancer: comparison with CT, bone scintigraphy and bone marrow analysis. Ann Oncol 2007; 18:338–345.
- 292. Vinjamuri M, Craig M, Campbell-Fontaine A, Almubarak M, Gupta N, Rogers JS. Can positron emission tomography be used as a staging tool for small-cell lung cancer? Clin Lung Cancer 2008; 9:30–34.
- 293. Arslan N, Tuncel M, Kuzhan O, Alagoz E, Budakoglu B, Ozet A, et al. Evaluation of outcome prediction and disease extension by quantitative 2-deoxy-2-[18F] fluoro-D-glucose with positron emission tomography in patients with small cell lung cancer. Ann Nucl Med 2011; 25: 406–413.
- 294. Orlacchio A, Schillaci O, Antonelli L, D'Urso S, Sergiacomi G, Nicoli P, Simonetti G. Solitary pulmonary nodules: morphological and metabolic characterisation by FDG-PET-MDCT. Radiol Med (Torino) 2007; 112:157–173.
- 295. Herder GJ, Golding RP, Hoekstra OS, Comans EF, Teule GJ, Postmus PE, Smit EF. The performance of 18Ffluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 2004; 31:1231–1236.
- 296. Degirmenci B, Wilson D, Laymon CM, Becker C, Mason NS, Bencherif B, Avril N. Standardized uptake valuebased evaluations of solitary pulmonary nodules using F-18 fluorodeoxyglucose-PET/computed tomography. Nucl Med Commun 2008; 29:614–622.
- 297. Martins RC, Almeida SA, Siciliano AAO, Landesmann MCPP, Silva FBD, Franco CADB, et al. Value of [18F]-FDG-PET/CT as a predictor of cancer in solitary pulmonary nodule. J Bras Pneumol 2008; 34:473–480.
- 298. Sim YT, Goh YG, Dempsey MF, Han S, Poon FW. PET-CT evaluation of solitary pulmonary nodules: correlation with maximum standardized uptake value and pathology. Lung 2013; 191:625–632.
- 299. Dalli A, Selimoglu Sen H, Coskunsel M, Komek H, Abakay O, Sergi C. Diagnostic value of PET/CT in differentiating benign from malignant solitary pulmonary nodules. J BUON 2013; 18:935–941.

- 300. Zhang J, Cui LB, Tang X, Ren XL, Shi JR, Yang HN, Yin H. DW MRI at 3.0 T versus FDG PET/CT for detection of malignant pulmonary tumors. Int J Cancer 2014; 134:606–611.Jeong SY, Lee KS, Shin KM, Bae YA, Kim BT, Choe BK, Chung MJ. Efficacy of PET/CT in the characterization of solid or partly solid solitary pulmonary nodules. Lung Cancer 2008; 61:186–194.
- 301. Jeong HS, Baek CH, Son YI, Chung MK, Lee DK, Choi JY, et al. Use of integrated 18F-FDG PET/CT to improve the accuracy of initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma. Head Neck 2007;29(3):203–10.
- 302. Li S, Zhao B, Wang X, Yu J, Yan S, Lv C, Yang Y. Overestimated value of 18F-FDG PET/CT to diagnose pulmonary nodules: analysis of 298 patients. Clin Radiol 2014; 69: e352–e357.
- 303. Li YL, Su M, Li F, Kuang A, Tian R. The value of 18F-FDG-PET/CT in the differential diagnosis of solitary pulmonary nodules in areas with a high incidence of tuberculosis. Ann Nucl Med 2011; 25:804–811.
- 304. López OG, Vicente AMG, Martínez AFH, Londoño GAJ, Londoño GAJ, Caicedo CHV, et al. 18F-FDG-PET/CT in the assessment of pulmonary solitary nodules: comparison of different analysis methods and risk variables.
- 305. Dabrowska M, Krenke R, Korczynski P, Maskey-Warzechowska M, Zukowska M, Kunikowska J, Chazan R. Diagnostic accuracy of contrast enhanced computed tomography and positron emission tomography with 18-FDG in identifying malignant solitary pulmonary nodules. Medicine (Baltimore) 2015; 94: e666.
- 306. Tasci E, Tezel C, Orki A, et al. The role of integrated positron emission tomography and computed tomography in the assessment of nodal spread in cases with non-small cell lung cancer. Interact Cardiovasc Thorac Surg 2010; 10:200 –203.
- 307. Li XD, Yin JL, Liu WK, et al. Value of positron emission tomography computed tomography in the diagnosis of mediastinal lymph node metastasis of non-small cell lung cancer. Nan Fang Yi Ke Da Xue Xue Bao 2010; 30:506 –508.
- 308. Sit AK, Sihoe AD, Suen WS, et al. Positron-emission tomography for lung cancer in a tuberculosis-endemic region. Asian Cardiovasc Thorac Ann 2010; 18:33–38.
- 309. Bille A, Pelosi E, Skanjeti A, et al. Preoperative intrathoracic lymph node staging in patients with non-smallcell lung cancer: accuracy of integrated positron emission tomography and computed tomography. Eur J Cardio thorac Surg 2009; 36:440–445.
- 310. Perigaud C, Bridji B, Roussel JC, et al. Prospective preoperative mediastinal lymph node staging by integrated positron emission tomography computerised tomography in patients with non-small-cell lung cancer. Eur J Cardio thorac Surg 2009; 36:731–736.
- 311. Sanli M, Isik AF, Zincirkeser S, et al. Reliability of positron emission tomography-computed tomography in identification of mediastinal lymph node status in patients with non-small cell lung cancer. J Thorac Cardiovasc Surg 2009; 138:1200 –1205.
- 312. Lee JW, Kim BS, Lee DS, et al. 18F-FDG PET/CT in mediastinal lymph node staging of non-small-cell lung cancer in a tuberculosis-endemic country: consideration of lymph node calcification and distribution pattern to improve specificity. Eur J Nucl Med Mol Imaging 2009;36: 1794–1802.

- 313. Al-Sarraf N, Gately K, Lucey J, et al. Lymph node staging by means of positron emission tomography is less accurate in non-small cell lung cancer patients with enlarged lymph nodes: analysis of 1,145 lymph nodes. Lung Cancer 2008; 60:62–68.
- 314. Yang W, Fu Z, Yu J, et al. Value of PET/CT versus enhanced CT for locoregional lymph nodes in non-small cell lung cancer. Lung Cancer 2008; 61:35–43.
- 315. Hu M, Yu JM, Liu NB, et al. Significance of dual-time-point 18F-FDG PET imaging in evaluation of hilar and mediastinal lymph node metastasis in non-small-cell lung cancer. Zhonghua Zhong Liu Za Zhi 2008; 30:306 – 309.
- 316. Kim YK, Lee KS, Kim BT, et al. Mediastinal nodal staging of non-small cell lung cancer using integrated 18F-FDG PET/CT in a tuberculosis endemic country: diagnostic efficacy in 674 patients. Cancer 2007;109: 1068– 1077.
- 317. Lee BE, von Haag D, Lown T, et al. Advances in positron emission tomography technology have increased the need for surgical staging in non-small cell lung cancer. J Thorac Cardiovasc Surg 2007; 133:746–752.
- 318. Bryant AS, Cerfolio RJ, Klemm KM, et al. Maximum standard uptake value of mediastinal lymph nodes on integrated FDG-PET-CT predicts pathology in patient with non-small cell lung cancer. Ann Thorac Surg 2006; 82:417–423.
- 319. Tássia Machado Medeiros1 & Stephan Altmayer & Guilherme Watte & Matheus Zanon & Adriano Basso Dias & Natália Henz Concatto & Julia Hoefel Paes & Rita Mattiello1 & Francisco de Souza Santos1 & Tan-Lucien Mohammed & Nupur Verma & Bruno Hochhegger,18F-FDG PET/CT and whole-body MRI diagnostic performance in M staging for non-small cell lung cancer: a systematic review and meta-analysis, European Radiology 2020
- 320. Billè A, Okiror L, Skanjeti A, Errico L, Arena V, Penna D, et al. Evaluation of integrated positron emission tomography and computed tomography accuracy in detecting lymph node metastasis in patients with adenocarcinoma vs squamous cell carcinoma. European Journal of Cardio-Thoracic Surgery 2013;43(3):574-9.
- 321. Carnochan FM, Walker WS. Positron emission tomography may underestimate the extent of thoracic disease in lung cancer patients. European Journal of Cardio-Thoracic Surgery 2009;35(5):781-4.
- 322. Chen W, Jian W, Li HT, Li C, Zhang YK, Xie B, et al. Whole-body diNusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up? Magnetic Resonance Imaging 2010;28(5):613-20.
- 323. Czepczynski R, Zielinski P, Stangierski A, Gabryel P, Kasprzak W, Dyszkiewicz W, et al. The value of 18F-FDG PET/CT scan in the evaluation lymph node status in patients with non-small cell lung carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 2011
- 324. Darling GE, Maziak DE, Inculet RI, Gulenchyn KY, Driedger AA, Ung YC, et al. Positron emission tomography-computed tomography compared with invasive mediastinal staging in non-small cell lung cancer: results of mediastinal staging in the early lung positron emission tomography trial. Journal of Thoracic Oncology 2011;6(8):1367-72.

- 325. De Wever W, Ceyssens S, Mortelmans L, Stroobants S, Marchal G, Bogaert J, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. European Radiology 2007;17(1):23-32.
- 326. El-Hariri MA, Gouhar GK, Refat AM. Integrated PET/CT in the preoperative staging of lung cancer: a prospective comparison of CT, PETand integrated PET/CT. The Egyptian Journal of Radiology and Nuclear Medicine 2012;43(4):613-21.
- 327. Fischer B, Lassen U, Mortensen J, Larsen S, LoO A, Bertelsen A, et al. Preoperative staging of lung cancer with combined PETCT. The New England Journal of Medicine 2009;361(1):32-9.
- 328. Gunluoglu MZ, Melek H, Medetoglu B, Demir A, Kara HV, Dincer SI. The validity of preoperative lymph node staging guidelines of European Society of Thoracic Surgeons in nonsmall- cell lung cancer patients. European Journal of Cardiothoracic Surgery 2011;40(2):287-90. [PUBMED: 21185733]
- 329. Harders, SW, Madsen HH, Hjorthaug K, Arveschoug AK, Rasmussen TR, Meldgaard, P, et al. Mediastinal staging in non-small cell lung carcinoma: CT versus F-18-FDG PET/CT. Cancer Imaging in press.
- 330. Hu M, Han A, Xing L, Yang W, Fu Z, Huang C, et al. Value of dual time- point FDG PET/CT for mediastinal nodal staging in non– small-cell lung cancer patients with lung comorbidity. Clinical Nuclear Medicine 2011;36(6):429-33.
- 331. Iskender I, Kadioglu SZ, Cosgun T, Kapicibasi HO, Sagiroglu G, Kosar A, et al. False-positivity of mediastinal lymph nodes has negative eNect on survival in potentially resectable non-small cell lung cancer. European Journal of Cardio-Thoracic Surgery 2012;41(4):874-9.
- 332. Jeon TY, Lee KS, Yi CA, Chung MP, Kwon OJ, Kim B-T, et al. Incremental value of PET/CT over CT for mediastinal nodal staging of non–small cell lung cancer: comparison between patients with and without idiopathic pulmonary fibrosis. American Journal of Roentgenology 2010;195(2):370-6.
- 333. Koksal D, Demirag F, Bayiz H, Ozmen O, Tatci E, Berktas B, et al. The correlation of SUVmax with pathological characteristics of primary tumor and the value of tumor/ lymph node SUV max ratio for predicting metastasis to lymph nodes in resected NSCLC patients. Journal of Cardiothoracic Surgery 2013; 8:63-70.
- 334. Kuo WH, Wu YC, Wu CY, Ho KC, Chiu PH, Wang CW, et al. Node/ aorta and node/liver SUV ratios from (18)F-FDG PET/CT may improve the detection of occult mediastinal lymph node metastases in patients with non-small cell lung carcinoma. Academic Radiology 2012;19(6):685-92.
- 335. Lee SH, Min JW, Lee CH, Park CM, Goo JM, Chung DH, et al. Impact of parenchymal tuberculosis sequelae on mediastinal lymph node staging in patients with lung cancer. Journal of Korean Medical Sciences 2011;26(1):67-70.
- 336. Lee SM, Park CM, Paeng JC, Im HJ, Goo JM, Lee HJ, et al. Accuracy and predictive features of FDG-PET/CT and CT for diagnosis of lymph node metastasis of T1 non-small-cell lung cancer manifesting as a subsolid nodule. European Radiology 2012;22(7):1556-63.
- 337. Li XD, Yin JL, Liu WK, Ouyang X, Zhou Z, Qiao GB, et al. Value of positron emission tomography-computed tomography in the diagnosis of mediastinal lymph node metastasis of non-small cell lung cancer. Journal of Southern Medical University 2010;30(3):506-8.

- 338. Li M, Wu N, Liu Y, Zheng R, Liang Y, Zhang W, et al. Regional nodal staging with 18F-FDG PET-CT in nonsmall cell lung cancer: Additional diagnostic value of CT attenuation and dual-time-point imaging. European Journal of Radiology 2012;81(8):1886-90.
- 339. Morikawa M, Demura Y, Ishizaki T, Ameshima S, Miyamori I, Sasaki M, et al. The electiveness of 18F-FDG PET/CT combined with STIR MRI for diagnosing nodal involvement in the thorax. Journal of Nuclear Medicine 2009;50(1):81-7.
- 340. Ohno Y, Koyama H, Yoshikawa T, Nishio M, Aoyama N, Onishi Y, et al. N stage disease in patients with nonsmall cell lung cancer: Efficacy of quantitative and qualitative assessment with STIR turbo spin-echo imaging, diNusion-weighted MR imaging, and fluorodeoxyglucose PET/CT. Radiology 2011;261(2):605-15.
- 341. Ose N, Sawabata N, Minami M, Inoue M, Shintani Y, Kadota Y, Okumura M. Lymph node metastasis diagnosis using positron emission tomography with 2-[F-18] fluoro-2-deoxy-D-glucose as a tracer and computed tomography in surgical cases of nonsmal cell lung cancer. European Journal of Cardio-Thoracic Surgery 2012;42(1):89-92.
- 342. Ozkan EA, Araz M, Soydal C, Aras G. A retrospective analysis of 18F-FDG PET/CT in the primary staging of non-small cell lung cancer (NSCLC). European Journal of Nuclear Medicine and Molecular Imaging 2011.
- 343. Plathow C, Aschoff P, Lichy MP, Eschmann S, Hehr T, Brink I, et al. Positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced non-small cell lung cancerinitial results. Investigative Radiology 2008;43(5):290-7.
- 344. Saydam O, Gokce M, Kilicgun A, Tanriverdi O. Accuracy of positron emission tomography in mediastinal node assessment in coal workers with lung cancer. Medical Oncology 2012;29(2):589-94.
- 345. Shin KM, Lee KS, Shim YM, Kim J, Kim BT, Kwon OJ, et al. FDG PET/CT and mediastinal nodal metastasis detection in stage T1 non-small cell lung cancer: prognostic implications. Korean Journal of Radiology 2008;9(6):481-9.
- 346. Sommer_G, Wiese_M, Winter_L, Lenz_C, Klarhofer_M, Forrer_F, et al. Preoperative staging of non-smallcell lung cancer: comparison of whole-body diffusion-weighted magnetic resonance imaging and 18Ffluorodeoxyglucose-positron emission tomography/computed tomography. European Radiology 2012;22(12):2859-67.
- 347. Subedi N, Scarsbrook A, Darby M, Korde K, Mc SP, Muers MF. The clinical impact of integrated FDG PET-CT on management decisions in patients with lung cancer. Lung Cancer 2009;64(3):301-7.
- 348. Toba H, Kondo K, Otsuka H, Takizawa H, Kenzaki K, Sakiyama S, et al. Diagnosis of the presence of lymph node metastasis and decision of operative indication using fluoro deoxy glucose positron emission tomography and computed tomography in patients with primary lung cancer. Journal of Medical Investigation 2010;57(3-4):305-13.
- 349. Tournoy KG, Maddens S, Gosselin R, Van Maele G, van Meerbeeck JP, Kelles A. Integrated FDG-PET/CT does not make invasive staging of the intrathoracic lymph nodes in non-small cell lung cancer redundant: a prospective study. Thorax 2007;62(8):696-701.

- 350. Uruga H. PET/CT for mediastinal lymph node staging in non-small-cell lung cancer with interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine 2011.
- 351. Üskül BT, Baysungur V, Aksoy F, Turan FE, Sevilgen G, Turker H, et al. Combined use of transbronchial needle aspiration and PET/CT in mediastinal nodal staging of non-small cell lung cancer. Multidisciplinary Respiratory Medicine 2009;4(1):8-14.
- 352. Usuda K, Sagawa M, Motono N, Ueno M, Tanaka M, Machida Y, et al. Advantages of diffused-weighted imaging over positron emission tomography-computer tomography in assessment of hilar and mediastinal lymph nodes in lung cancer. Annals of Surgical Oncology 2013;20(5):1676-83.
- 353. Yi CA, Shin, KM, Lee KS, Kim BT, Kim H, et al. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology 2008;248(2):632-42.
- 354. Scott WJ, Schwabe JL, Gupta NC, Dewan NA, Reeb SD, Sugimoto JT. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose. Ann Thorac Surg 1994;58:698–703.
- 355. Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB. Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 1994;191:371–7.
- 356. Chin R, Ward R, Keyes JW, et al. Mediasinal staging of non-small cell lung cancer with positron emission tomography. Am J Respir Crit Care Med 1995;152:2090–6.
- 357. Valk PE, Pounds TR, Hopkins DM, et al. Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. Ann Thorac Surg 1995;60:1573–82.
- 358. Scott WJ, Gobar LS, Terry JD, Dewan NA, Sunderland JJ. Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg 1996;111:642– 8.
- 359. Sazon DAD, Santiago SM, Soo Hoo GW, et al. Fluorodeoxyglucose- positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med 1996;153: 417–21.
- 360. Sasaki M, Ichiya Y, Kuwabara Y, et al. The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med 1996; 23:741–7.
- 361. Vansteenkiste JF, Stroobants SG, De Leyn PR, et al. Mediastinal lymph node staging with FDG-PET scan in patients with potentially operable non-small cell lung cancer: a prospective analysis of 50 cases. Chest 1997;112:1480–6.
- 362. Steinert HC, Hauser M, Allemann F, et al. Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology 1997;202:441–6.
- 363. Guhlmann A, Storck M, Kotzerke J, Moog F, Sunder- Plassmann L, Reske RN. Lymph node staging in nonsmall cell lung cancer: evaluation by [18F] FDG positron emission tomography (PET). Thorax 1997;52:438– 41.

- 364. Hagberg RC, Segall GM, Stark P, Burdon TA, Pompili MF. Characterization of pulmonary nodules and mediastinal staging of bronchogenic carcinoma with F-18 fluorodeoxyglucose positron emission tomography. Eur J Cardiothorac Surg 1997;12:92–7.
- 365. Bury T, Dowlati A, Paulus P, et al. Whole-body 18FDG positron emission tomography in the staging of nonsmall cell lung cancer. Eur Respir J 1997;10:2529 –34.
- 366. Saunders CAB, Dussek JE, O'Doherty MJ, Maisey MN. Evaluation of fluorine-18-fluorodeoxyglucose whole body positron emission tomography imaging in the staging of lung cancer. Ann Thorac Surg 1999;67:790 –7.
- 367. Marom EM, McAdams HP, Erasmus JJ, et al. Staging nonsmall cell lung cancer with whole-body PET. Radiology 1999;212:803–9.
- 368. Pieterman RM, van Putten JWG, Meuzelaar JJ, et al. Preoperative staging of non-small cell lung cancer with positron emission tomography. N Eng J Medy 2000;343:254–61.
- 369. Gupta NC, Graeber GF, Bishop HA. Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (_1 cm), intermediate (1 to 3 cm), and large (_3 cm) lymph node lesions. Chest 2000;117:773–8.
- 370. Poncelet AJ, Lonneux M, Coche E, Weynand B, Noirhomme Ph PET-FDG scan enhances but does not replace preoperative surgical staging in non-small cell lung cancer. Eur J Cardiothorac Surg 2001;20:468 –75.
- 371. Yasuomi Ohba, Hiroaki Nomori, Takeshi Mori, Koei Ikeda, Hidekatsu Shibata, Hironori Kobayashi, Shinya Shiraishi, and Kazuhiro Katahira. Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F 18 in imaging non–small cell lung cancer? General Thoracic Surgery
- 372. A. Szlubowski, M. Zieli'nski, J. Soja et al., "A combined approach of endobronchial and endoscopic ultrasoundguided needle aspiration in the radiologically normal mediastinum in non-small- cell lung cancer staging—a prospective trial," European Journal of Cardio-Thoracic Surgery, vol. 37, no. 5, pp. 1175–1179, 2010.
- 373. A. Szlubowski, J. Soja, P. Koco'n et al., "A comparison of the combined ultrasound of the mediastinum by use of a single ultrasound bronchoscope versus ultrasound bronchoscope plus ultrasound gastroscope in lung cancer staging: a prospective trial," Interactive Cardiovascular and Thoracic Surgery, vol. 15, no. 3, pp. 442–446, 2012.
- 374. P. Vilmann, M. Krasnik, S. S. Larsen, G. K. Jacobsen, and P. Clementsen, "Transoesophageal endoscopic ultrasound guided fine-needle aspiration (EUS-FNA) and endobronchial ultrasound-guided transbronchial needle aspiration (EBUSTBNA) biopsy: a combined approach in the evaluation of mediastinal lesions," Endoscopy, vol. 37, no. 9, pp. 833–839, 2005.
- 375. Stuart A Taylor, Sue Mallett, Simon Ball, Sandy Beare, Gauraang Bhatnagar, Angshu Bhowmik, Peter Boavida, John Bridgewater, Caroline S Clarke, Marian Duggan, Steve Ellis, Robert Glynne-Jones, Vicky Goh, Ashley M Groves, Ayshea Hameeduddin, Sam M Janes, Edward W Johnston, Dow-Mu Koh, Sara Lock, Anne Miles, Stephen Morris, Alison Morton, Neal Navani, Alfred Oliver, Terry O'Shaughnessy, Anwar R Padhani, David Prezzi, Shonit Punwani, Laura Quinn, Hameed Rafiee, Krystyna Reczko, Andrea G Rockall, Peter Russell, Harbir S Sidhu, Nicola Strickland, Kathryn Tarver, Jonathan Teague, Steve Halligan, on behalf of the Streamline investigators, Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease

in newly diagnosed non-small-cell lung cancer: the prospective Streamline L trial. Lancet Respir Med 2019; 7: 523–32.

- 376. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines: non-small cell lung cancer. Fort Washington, PA: NCCN, 2016
- 377. (<u>https://www.expresshealthcare.in/trade-trends/cancer-imaging-using-pet-ct-genesis-and-current-state-in-india/395928/#</u>).
- 378. https://elora.aerb.gov.in/ELORA/IIMStatisticsAction.htm).
- 379. (https://www.expresshealthcare.in/trade-trends/cancer-imaging-using-pet-ct-genesis-and-current-state-inindia/395928/#).
- 380. Mortality due to cancer treatment delay: systematic review and meta-analysis BMJ 2020; 371 doi: https://doi.org/10.1136/bmj.m4087 (Published 04 November 2020) Cite this as: BMJ 2020;371:m4087)
- 381. J Giftson Senapathy, P Umadevi, PS Kannika, The Present Scenario of Cervical Cancer Control and HPV, Epidemiology in India: An Outline.
- 382. Goldie S, Galkin L, Goldhaber-Fiebert J, et al (2005). Cost effectiveness of cervical screening in five developing countries. N Eng J Med, 353, 2158–2168.
- 383. Ferlay J, Hery C, Autier P, et al (2010a). Global burden of breast cancer. in 'breast cancer epidemiology', Eds Springer New York, 1-19.
- 384. Maneeta Jain, Kanchan Mukherjee Economic burden of breast cancer to the households in Punjab, India, International Journal of Medicine and Public Health Jan-Mar 2016 | Vol 6 | Issue 1.
- 385. R. Sankaranarayanan, K. Ramadas, G. Thomas et al., "Effect of screening on oral cancer mortality in Kerala, India: a cluster randomised controlled trial," The Lancet, vol. 365, no. 9475, pp. 1927–1933, 2005.
- 386. Bhawna Gupta, Anura Ariyawardana and Newell W. Johnson "Oral cancer in India continues in epidemic proportions: evidence base and policy initiatives "International Dental Journal 2013; 63:12–25.
- 387. Jeba Karunya Ramireddy, Daniel Sathiya Sundaram, Rabin K. Chacko, Cost Analysis of Oral Cancer Treatment in a Tertiary Care Referral Center in India, Asian Pac J Cancer Biol, 2 (1), 17-21.
- 388. The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017 Lancet Gastroenterol Hepatol 2020; 5: 42–54.
- 389. Shantanu Solanki, Raja Chandra Chakinala, Khwaja Fahad Haq, Muhammad Ali Khan, Alina Kifayat, Katherine Linder, Zubair Khan, Uvesh Mansuri, Khwaja Saad Haq, Christopher Nabors, Wilbert S. Aronow Inpatient burden of gastric cancer in the United States Ann Transl Med 2019;7(23):772.
- 390. Mayank Singh, Chandra Prakash Prasad, Lalit Kumar, Cancer research in India: Challenges and opportunities, The Indian journal of medical research, 148(4), 2018, 362-365.)
- 391. Intended Versus Inferred Management after PET For Cancer Restaging: Analysis of Medicare Claims Linked to a Coverage With Evidence Development Registry, Med Care. 2013 April ; 51(4): 361–367. doi:10.1097/MLR.0b013e318287d860.

- 392. Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010 Jan;37(1):181-200. doi: 10.1007/s00259-009-1297-4. PMID: 19915839; PMCID: PMC2791475.
- 393. Guidelines regarding implementation of Umbrella Scheme of Rashtriya Arogya Nidhi (RAN) [Internet]. 1996. Available from: https://mohfw.gov.in/sites/default/files/25632541254789653265.pdf
- 394. Government of India Ministry of Health & Family Welfare [Internet]. 2008. Available from: https://mohfw.gov.in/sites/default/files/Rashtriya Arogya Nidhi %28RAN%29 and Health Minister's Discretionary Grants %28HMDG%29.pdf
- 395. Rashtriya Arogya Nidhi. Health ministers Cancer Patient Fund. 2009; Available from: https://mohfw.gov.in/sites/default/files/2563214569875214.pdf
- 396. Mayank Singh, Chandra Prakash Prasad, Lalit Kumar, Cancer research in India: Challenges and opportunities, The Indian journal of medical research, 148(4), 2018, 362-365.
- 397. Bar-Shalom R, Yefremov N, Guralnik L, Gaitini D, Frenkel A, Kuten A, et al. Clinical performance of PET/CT in evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med 2003;44:1200-9.]
- 398. Available from- (https://www.ibef.org/download/PolicyPaper.pdf).