

Economic Evaluation of Percutaneous Coronary Intervention as compared to Coronary Artery Bypass Grafting in Left Main Coronary Artery Disease

HTAIn Secretariat

Department of Health Research Ministry of Health and Family Welfare Government of India New Delhi, 110001

Abbreviations
List of Figures and Tables4
Introduction5
Aims and Objectives
PICO9
Methodology10
Estimation of Costs (PCI+OMT)11
Estimation of Costs (CABG+OMT)12
Literature review on Clinical Effectiveness
Literature review on Quality of life data
Estimation of costs
Estimation of ICER
Results
One way Sensitivity Analysis
Probabilistic Sensitivity Analysis
Conclusion and Recommendations
Limitations
References

CONTENTS

ABBREVIATIONS

CABG	Coronary Artery Bypass Graft
CAD	Coronary Artery Disease
CVD	Cardiovascular Disease
DALY	Disability-Adjusted Life Year
DHR	Department of Health Research
EQ5D	EuroQoL-Five Dimension
GOI	Government of India
HRQoL	Health Related- Quality of Life
HTAIn	Health Technology Assessment in India
ICER	Incremental Cost-Effectiveness Ratio
INR	Indian National Rupees
INR LMCAD	Indian National Rupees Left Main Coronary Artery Disease
	-
LMCAD	Left Main Coronary Artery Disease
LMCAD LMICs	Left Main Coronary Artery Disease Low and Middle Income Countries
LMCAD LMICs LY	Left Main Coronary Artery Disease Low and Middle Income Countries Life Years
LMCAD LMICs LY OMT	Left Main Coronary Artery Disease Low and Middle Income Countries Life Years Optimal Medical Therapy
LMCAD LMICs LY OMT PCI	Left Main Coronary Artery Disease Low and Middle Income Countries Life Years Optimal Medical Therapy Percutaneous Coronary Intervention
LMCAD LMICs LY OMT PCI QALY	Left Main Coronary Artery Disease Low and Middle Income Countries Life Years Optimal Medical Therapy Percutaneous Coronary Intervention Quality-Adjusted Life Year

LIST OF FIGURES

Figure 1: Conceptual framework for the economic evaluation for PCI versus CABG.
Figure 2: Markov Model used for the PCI Scenario.
Figure 3: Markov Model used for the CABG Scenario
Figure 4: One Way Sensitivity Analysis results for lifetime horizon
Figure 5: Cost-effectiveness cloud of probabilistic sensitivity analysis results
Figure 6: Cost-effectiveness acceptability curve based on probabilistic sensitivity analysis

LIST OF TABLES

Table 1: Summary table of literature review on clinical effectiveness
Table 2: Summary table of literature review on Quality of Life data
Table 3: Input parameters used for Economic Evaluation
Table 4: Total cost of PCI versus CABG for one year time horizon
Table 5: Cost estimates of PCI versus CABG for a life time horizon
Table 6: ICER of PCI versus CABG over one year time horizon
Table 7: ICER of PCI versus CABG over five year time horizon
Table 8: ICER of PCI versus CABG over ten year time horizon
Table 9: ICER of PCI versus CABG over twenty year time horizon

Introduction

Cardiovascular diseases (CVDs) are one of the leading causes of mortality in India.¹ Among CVDs, coronary artery disease (CAD) is the major cause of cardiovascular mortality and morbidity globally, causing approximately 7 million deaths annually.^{1,2}. World Health Organization (WHO) and Global Burden of Disease study declare increased prevalence of coronary heart disease in India, where it has increased from 1% to 9%-10% in urban populations and <1% to 4%-6% in rural populations in past several years.³

Population growth, aging, and a stable age-adjusted mortality rate has contributed to the increased prevalence in India and other low and middle income countries (LMICs). Moreover, the mortality rate due to CVDs in India is higher than the global average. Early age onset is one major contributing factor to the high CVD mortality in India. Statistics suggest around 23% of CVD deaths occur before the age of 70 years in western countries, whereas this number is as high as 52% in India.¹ Also, the comorbid conditions like diabetes, hypertension, renal failure etc. further contributes to the increased mortality. For e.g. in Indians, the mortality rate is 11% for non-diabetic patients and 21.4% for diabetic patients.⁴

Epidemiological transition from predominantly infectious disease conditions to noncommunicable diseases has also contributed to the above facts. In addition, individuals from lower socioeconomic backgrounds frequently do not receive optimal therapy, leading to poorer outcomes. Hence, there is an immense need of development of strategies such as the formulation and effective implementation of evidence based policy, reinforcement of health systems, and emphasis on prevention, early detection, and treatment of coronary artery and other cardiovascular diseases.¹

Coronary Artery Disease (CAD) refers to the pathological narrowing of arteries that supply blood to heart muscles. Individuals with coronary artery disease have different phenotypic variations, which include variations in the number of affected vessels, location of lesions, and degree of vascular stenosis. Among these anatomic phenotype variants, blockage of Left Major (LM) coronary artery and Triple Vessel Disease (TVD), which refers to the blockage of left anterior descending (LAD), left circumflex (LCX) and right coronary artery (RCA) are more complex. Left main coronary artery disease (LMCAD) accounts for 3% to 10% of patients undergoing coronary angiography. It is the highest-risk lesion subset, and correlates with worse prognosis following heart attack, compared with non-LMCAD.⁵

At present, Coronary Artery Bypass Graft surgery (CABG) and Percutaneous Coronary Intervention (PCI) are commonly available treatment options for Left Main coronary artery Disease.⁶ Although CABG is considered as a gold standard treatment for left main coronary artery disease (CAD), PCI has also gained attention in recent years as an alternative approach for the treatment of these coronary artery diseases.⁷ However, the best approach for the treatment of stable patients of these complex coronary artery diseases is still a subject of debate.

Contradicting results of recent randomized control trial studies have brought up the question of which is the optimal strategy in revascularization of patients with left main coronary artery disease (LMCAD). On one hand, the EXCEL trial⁸ of 1901 patients, who were randomly assigned for CABG and PCI, suggest that the rate of composite outcome of death, stroke, or

myocardial infarction at 5 years is almost similar in both PCI and CABG and found PCI to be non-inferior than CABG. This trial reports that average number of stents used in LMCAD is 2.4, which have economic implications as well. NOBLE trial⁹ on the other hand, reported that PCI was associated with an inferior clinical outcome when compared to CABG at 5 years" Many of the trials also use contemporary treatment approach and obsolete stent technology for e.g. in case of revascularization with PCI, further questioning the use of the extrapolation of such results in future studies. Thorough evaluation is thus required for assessing suitability of stenting versus grafting and overall surgical risk before recommendation to patients. Moreover, various national registries like CREATE, Kerala ACS, DEMAT-11 and SPREAD-12 etc. have also reported low use of evidence-based treatment for management of coronary artery disease in the country in past few years.¹⁰⁻¹² Hence, in the present study we have evaluated the economic and health outcomes of CABG vs PCI for left main coronary artery disease over the lifetime of a patient in Indian healthcare settings.

Aim

To conduct a full economic evaluation of Percutaneous Coronary Intervention in patients with stable Left Major Coronary Artery Disease as compared to Coronary Artery Bypass Graft in Indian healthcare setting.

Objectives

- To ascertain the Incremental Cost-Effectiveness Ratio (ICER) of Percutaneous Coronary Intervention as compared to Coronary Artery Bypass Graft for patients with stable Left Major Coronary Artery Disease in Indian healthcare setting.
- To ascertain the cost of treatment (over lifetime) in Percutaneous Coronary Intervention and Coronary Artery Bypass Graft for patients with stable Left Major Coronary Artery Disease in Indian healthcare setting.
- To ascertain Health Related Quality of Life in Percutaneous Coronary Intervention and Coronary Artery Bypass Graft for patients with stable Left major Coronary Artery Disease in Indian healthcare setting.

PICOT:

Population: Patients diagnosed with Left Main Coronary Artery Disease.

Intervention: Percutaneous Coronary Intervention (PCI)

Comparator: Coronary Artery Bypass Grafting (CABG)

Outcome:

- Overall cost of the treatment in intervention group and comparator group.
- Life Years gained with PCI in comparison to CABG among LMCAD patients.
- Quality Adjusted Life Years gained in intervention and comparison group.
- Incremental Cost-Effectiveness Ratio (ICER) of PCI as compared to CABG in patients with LMCAD

Time horizon

- One Year
- Five Year
- Ten Year
- Twenty Year (corresponding to the lifetime horizon)

As, average age of patient in India, reporting for PCI or CABG for LMCAD is 58 years; we run the Markov trace for twenty years and reported costs and overall health gains for each interval of one year, five year, ten years and twenty years' time horizon for the comparison. Incremental Cost-Effectiveness Ration (ICER) also was computed for all these time points.

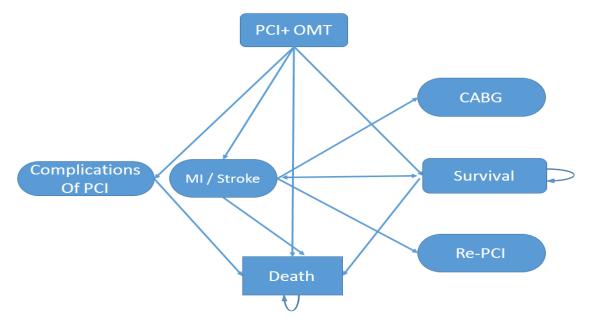
Perspective


• Abridged Societal Perspective

(Including health system's cost as well as patient's out of pocket expenditure)

Methodology:

This study is a model based estimation of incremental costs and QALYs gained in CABG group and percutaneous coronary intervention group in LMCAD patients. We used two separate Markov models to estimate the overall costs and health outcome for the comparison. Data pertaining to the costs, clinical effectiveness and Quality of Life was taken from the secondary literature. No primary data collection was done for the inputs parameters of this study. All future costs and clinical outcomes were discounted at the annual rate of 3 percent in accordance to the HTAIn Manual. Two scenario were run separately for patients of stable LM with or without TVD were in first (intervention) scenario, all patients were initially revascularised with PCI and its subsequent health outcome were estimated using dynamic transition model. This dynamic transition model included all the initial and subsequent costs and health outcome giving results in terms of total cost and quality adjusted life years gained. A broad conceptual framework for this economic evaluation is given below in figure 1.



Estimation of Costs and Health Outcomes in Scenario I (PCI+OMT)

A dynamic transition model was built using the course of disease and stages/events in the life history after PCI as reported in the literature for the patient of stable LM CAD. This model covered both the peri-procedural and post procedural events and stages after PCI. Periprocedural complications and events as reported in the literature by most of the trials on LM CAD are Myocardial Infarction, Stroke, Access Site Infection, and Peri-Procedural Death. In the subsequent years, post procedural events like post-procedural Myocardial Infarction, Stroke, need for repeat revascularization through PCI or CABG as reported in the literature was used during the analysis. As suggested by literature and clinical opinion, follow up drugs and their cost was also considered in the evaluation. Drugs included in the follow up period after PCI were Aspirin, Atorvastatin, Atenolol, Clopidogrel, Enalapril , Nitrates, and Amlodipine. Their cost was taken from the Jan Aushadhi Rate List. Markov model with its health states/events used in PCI state is as shown in figure 2.

Estimation of Costs and Health Outcomes in Scenario II (CABG+OMT)

Similarly, a dynamic transition model was built using the course of disease and stages/events in the life history after CABG as reported in the literature for the patient of stable LM CAD. This model covered both the peri-procedural and post procedural events and stages after CABG. Periprocedural complications and events as reported in the literature by most of the trials on LM CAD are Myocardial Infarction, Stroke, Access Site Infection, Sternum Infection and Peri-Procedural Death. In the subsequent years, post procedural events like post-procedural Myocardial Infarction, Stroke, need for repeat revascularization through PCI or CABG as reported in the literature was used during the analysis. As suggested by literature and clinical opinion, follow up drugs and their cost was also considered in the evaluation. Drugs included in the follow up period after CABG were Aspirin, Atorvastatin, Atenolol, Enalapril. Nitrates and Amlodipine. Their cost was taken from the Jan Aushadhi Rate List. Markov model with its health states/events used in CABG state is as shown in figure 3.

Literature review on Clinical Effectiveness

A target Literature Review (TLR) was conducted in PubMed to retrieve studies published on CABG and PCI in LMCAD patients using the following search strategy:

((((Coronary artery Bypass Surgery [Title/Abstract]) OR (CABG [Title/Abstract])) AND (Per cutaneous Intervention [Title/Abstract])) OR (PCI [Title/Abstract])) AND (Left main coronary artery Disease [Title/Abstract])

Titles and abstracts were screened and full text articles were downloaded which are eligible for the study, according to set inclusion and exclusion criteria. Only articles that are published on English are considered in the study. Published literature that include patients with Stable Left main coronary artery disease (LMCAD) only were considered for analysis. Published literature that include patients with Stable Left main coronary artery disease (LMCAD) are considered for analysis. We reviewed various articles such as Randomized Control Trails, Meta-analysis and systematic review and meta-analysis. Most important studies include NOBEL trail among unprotected left main stenosis, EXCEL trial in LMCAD patients and SYNTAX TRIAL in LMCAD.

A	uthor,	Disease	Study	Trail Name	Intervention	Follow	Study
J	'ear	under	design,		and	up	Conclusion
		study	(sample		Comparator	period	
			size)				
A	hmad	Left main	systematic	-	PCI and	10 years	This study
7	et al.,	coronary	review and		CABG	(Mean	concluded that

2020 ¹³	artery	meta-			avg.	long term
	disease	analysis			follow	mortality remain
		(4612)			up is	same in after
					67.1	PCI with DES
					months)	compared with
						CABG in
						LMCAD
						patients
Park	Unprotecte	Prospective,	PRECOMB	PCI and	10 years	This study
DW et	d left main	open-label,	AT trial	CABG		concluded that
al.,	coronary	randomized				there was no
2020 ¹⁴	artery	trial (600)				significant
	disease					difference in the
						occurrence of
						MACCE among
						LMCAD
						patients treated
						with PCI and
						CABG after 10
						years follow up
						period.
Holm	Left main	Prospective,	NOBLE	PCI and	5 years	Mortality was
NR et	coronary	randomised,	Trail	CABG		similar in both

al.,	artery	open-label,				the groups
2019 ⁹	disease	multi center,				however, higher
		non-				rates of non-
		inferiority				procedural MI
		trial. (1,184)				and repeat
						revascularisatio
						n was reported
						in PCI group.
						When compared
						to CABG at 5
						years, PCI was
						associated with
						an inferior
						clinical
						outcome.
Stone G.	Left main	International	EXCEL	PCI and	5 years	Study concluded
W. et al.,	coronary	, open label,	Trail	CABG		that the rate of
2019 ⁸	artery	multi center,				composite
	disease.	randomized				outcome of
		trial. (1,905)				death, stroke, or
						myocardial
						infarction at 5
						years is similar

						in both PCI and
						CABG and
						found no
						significant
						difference.
Thuijs	Patients	Multicentric,	SYNTAX	PCI and	10 years	Study concluded
DJFM et	with de-	Randomized	Trial	CABG		that there was
al.,	novo three-	Control				no significant
2019 ¹⁵	vessel and	Trail.				difference
	left main	(1,800)				between first-
	coronary					generation
	artery					paclitaxel-
	disease.					eluting stents
						and CABG in
						terms of all-
						cause mortality
						at 10 years.
Boudrio	unprotected	multicenter,	-	PCI and	1 Year	With respective
t E et al.,	left main	randomized		CABG		to MACCE, it
2011 ¹⁶	coronary	trail (201)				was concluded
	artery					that PCI is
	disease					inferior to

with or			CABG among
without			unprotected LM
Multiple			stenosis
vessel			patients. It is
disease.			mainly due to
			higher repeat
			revascularizatio
			n rates,
			however, death
			and MI rates are
			non – inferior in
			PCI group at
			lower
			perioperative
			morbidity.

Literature review on Quality of Life data

Sources and Selection criteria

A targeted literature review (TLR) was performed using research articles from PubMed and Google Scholar platforms. Studies published from January 1, 2000, till present were considered. 23 articles were selected on the basis of following search terms:

((((Coronary artery Bypass Surgery [Title/Abstract]) OR (CABG [Title/Abstract])) AND (Per cutaneous Intervention [Title/Abstract])) OR (PCI [Title/Abstract])) AND (Left main coronary artery Disease [Title/Abstract]) AND ((Quality of Life [Title /Abstract]) OR (QoL[Title/Abstract]))

These literature search results were further selected on the basis of following Inclusion and Exclusion criteria. Selection was based on reported follow up time along with primary and secondary clinical endpoints. Preference was given to the recent metaanalysis and randomized control trial studies with long term outcomes.

Inclusion Criteria

Population: Published literature that include patients with Stable Left main coronary artery disease (LMCAD) were considered for analysis.

Interventions: Articles reporting on Quality of life after PCI with Drug Eluting Stents (DES) as compared to CABG were included in analysis.

Comparators: Article reporting Quality of life after CABG in patients with LMCAD were considered.

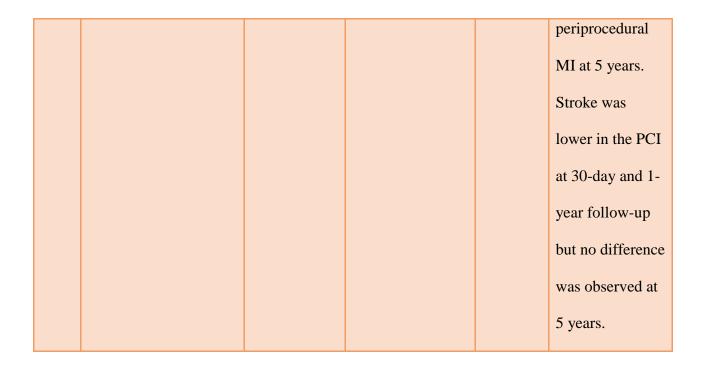
Outcomes: Health outcomes measured in either EQ-5D scores or SF-36 questionnaire along with hazard ratios were considered.

Study Design: Both randomized control trials (RCTs) and metaanalysis studies were included for comparing Percutaneous Coronary Intervention (PCI) with coronary artery bypass grafting (CABG) as an optimal strategy treatment of Left Main coronary artery disease (LM).

Exclusion Criteria

- Articles with acute coronary artery disease symptoms or studies performed on patients with triple vessel (TVD) or multi-vessel disease (MVD) or any other heart disease apart from Left Main Coronary Artery Disease i.e. non- LMCAD were excluded.
- > LM patients with other comorbidities were excluded.
- > Articles in languages other than English were excluded.
- Conference abstracts, letters to the editor, qualitative studies, reviews, case series, case reports, commentaries and interpretation of trials were also excluded.

S.No	Author/Journal/	Study	Clinical	Follow	Conclusion
	Year	Design	Endpoints	up	
				period	
1	Ahmad et al/ European	А	Primary: All-	67.1	No significant
	Heart Journal (2020) ¹³	metanalysis	cause mortality;	months	difference in
		of RCTs	Secondary:	weighted	PCI vs CABG
			Cardiac death,	average	was obtained in


Table 2: Summary table of literature review on Quality of Life data

			MI,		all primary and
			Stroke, Unplanned		secondary
			revascularization		clinical
					endpoints except
					that PCI results
					in increased risk
					of unplanned
					revascularization
2	Golicki et al/ Quality	An	-	1 week	The EQ-5D-5L
	of Life	observational		and 4	index, based on
	Research(2014) ¹⁷	longitudinal		months	the crosswalk
		cohort study		post-	value set, seems
		of patients		stroke	to be
		with stroke.			appropriately
					responsive in
					patients with
					stroke, 4 months
					after disease
					onset. As far as
					EQ-5D-5L index
					is scored
					according to
					crosswalk

					approach, the
					EQ-5D-3L index
					appears to be
					more
					responsive in
					stroke
					population.
3	Baron et al	RCT of 1905	QoLwas assessed	1, 12	Both PCI and
	/JAAC(2017)EXCEL ¹⁸	patients with	using Seattle	and 36	CABG result in
		LMCAD	Angina	months	similar QoL
		whom 1,788	Questionnaire,		improvement
		participated	the 12-ItemShort		through
		in the QoL	Form Health		36 months,
		substudy (a	Survey, the Rose		although a
		prospective	Dyspnea Scale,		greater early
		(QoL)	the Patient Health		benefit is seen
		substudy	Questionnaire-8,		with PCI.
		performed	and		
		alongside the	the EQ-5D		
		EXCEL			
		trial)			
4	Lee et al/ Journal of	Meta-	Primary: MI at	4.5 years	Patients treated
	American	analysis of	the longest	weighted	with CABG had

	Cardiology(2019) ¹⁹	RCTs for	available follow-	average	a significantly
		Risk of MI	up in the		lower risk of MI
		after CABG	intention-to-treat		than those with
		vs after PCI	population.		PCI. The
		with mv or			magnitude of
		LMCAD			risk reduction
					was similar
					across patients
					with multivessel
					disease or
					LMCAD
5	Andrade et al/ Arq	Stent versus	All case-		Compared with
	Bras Cardiol. 2019 ²⁰	CABG:	mortality,		CABG, PCI
		systematic	stroke, AMI and		using Stents
		review with	new		showed lower 30
		meta-	revascularization.		days mortality,
		analysis of	Mortality was		higher late
		PCI using	divided		mortality and
		Stents versus	into early		lower
		CABG in	mortality,		incidence of
		randomized	mortality at one		stroke. Diabetes
		controlled	year and late		and a high
		trials	mortality		SYNTAX were

					the subgroups
					that influenced
					more adversely
					the results of
					PCI
6	Gallow et al/ The	Meta-	All cause	30 day,	No difference in
	Journal of Thoracic	analysis	Mortality, Stroke	1 yr , 5	5-years
	and Cardiovascular	study with 5	, MI, Repeat	year	mortality
	Surgery 2020 ²¹	RCTs of	Revascularization		PCI is associated
		4595 patients			with a higher
					risk for MI and
					repeat
					revascularization
					compared to
					CABG for LM
					disease at 5 yr
					PCI was
					associated with
					lower
					periprocedural
					MI at index
					procedure but
					higher non

Estimation of Costs

To take the representative cost of doing PCI and CABG in India, cost parameters used in the model were taken from PMJAY Health Benefits Packages list, which are applicable to both private as well as public healthcare facilities. Costs of other complications and health events also were taken either from PMJAY Health Benefits Package list or from the published secondary literature. Cost of medicines prescribed to PCI and CABG group were also listed according to the literature and clinical expertise and then Jan Aushadhi rates were applied to find the overall follow-up cost. Any incremental cost of peri-procedural Myocardial Infarction is not added in this analysis.

Input Parameters Used

Following input parameters were used to feed the model for the Economic Evaluation:

Table 3: Input parameters of PCI and CABG used for Economic Evaluation				
INPUT PARAMETER	CABG	PCI	SOURCE	
Annual Probabilities of Various Clinical Events				
Peri-procedural MI	0.05978903	0.038277697	13	
Reopening for Bleeding	0.038106317	0.001687763	13	
Surgery for Sternum Infection	0.005054749	0	13	
Surgery for Access site complication	0.006733981	0.003372678	13	
All-Cause Mortality in 1st Year	0.032810789	0.031974564	13	
Cardiovascular Mortality in 1st Year	0.025285084	0.028046441	13	
Non Procedural MI in 1st year	0.041146335	0.04139462	13	
Repeat Vascularization 1st year	0.044975617	0.082164284	13	
Stroke in 1st year	0.017452945	0.007086584	13	
All-Cause Mortality in Subsequent Years	0.019024713	0.021299256	13	
Cardiovascular Mortality in Subsequent Years	0.009783416	0.010053807	13	
Non Procedural MI in Subsequent Years	0.010864537	0.01553577	13	
Revascularization with PCI in Subsequent Years	0.003965619	0.00676505	13	
Revascularization with CABG in Subsequent Year	0.015862476	0.027060199	13	
Stroke in Subsequent Years	0.00671382	0.005175455	13	
Cost Parameters used in the Analysis				
One time Cost of Procedure (PCI/CABG)	118000	113032*	PMJAY HBPs	
Annual Cost of OMT	3693	4655	Jan Aushadhi	
Discount Rate (Annual)	0.03		HTAIn Manual	
Cost of MI Management	61650		22	

Table 3: Input parameters of PCI and CABG used for Economic Evaluation

Cost of Reopening for Bleeding	10000	PMJAY HBPs
Cost for sternum infection Management	20000	PMJAY HBPs
Cost of access site infection Management	1800	PMJAY HBPs
Cost of Stroke	80612	23
QoL Stroke	0.69	17
QoL MI	0.70	18
QoL post PCI	0.876	18
QoL post CABG	0.876	18

Estimation of ICER

QALYs and cost are calculated based on the proportion of cohort in the each respective health state. QALY of the intervention group and comparator group are calculated from the utility and life years. Incremental cost and incremental QALY is calculated from the difference between the cost and QALY of intervention and comparator. ICER is the ratio of incremental cost and incremental QALY which represents the cost-effectiveness of the intervention to gaining one QALY. Discount of 3% was incorporated in the total cost and QALY and discounted ICER was also calculated.

Results

As described in the methodology section, the analysis was done for both scenarios with four different time horizons. In the first case, when estimations were done using one year time horizon, taking data about peri-procedural and post procedural health outcomes from the metaanalysis results directly. These results are favoring the PCI as there is almost same mortality and significantly lesser cost than CABG. One year time horizon results per patient are summarized in the table below:

1 YEAR TIME HORIZON	РСІ	CABG
Cost OMT	4506	3572
Cost CABG	0	123307
Cost PCI	122319	0
Cost MI	2552	2537
Cost Stroke	571	1407
Cost Re-opening for bleeding	18	398
Cost Surgery for Sternum Infection	0	106
Cost Surgery for access complication	6	13
Total Cost	129973	131339

Table 4: Total cost of PCI versus CABG for one year time horizon

When model is run for a longer period, especially for the twenty years period, results actually change. This change is primarily because of more number of repeat revascularizations required in PCI scenario. Here, the incremental QALYs lived are more in the CABG scenario and as depicted in the table below, incremental cost is negative i.e. lesser cost per patient is incurred in CABG than in PCI for the management of LMCAD in the longer run.

LIFE TIME HORIZON	РСІ	CABG
Cost OMT	74837	60557
Cost CABG	52452	149844
Cost PCI	125593	7626
Cost MI	35432	11200
Cost Stroke	6707	8875
Cost Re-opening for bleeding	171	104
Cost Surgery for Sternum Infection	45	27
Cost Surgery for access complication	6	4
Total Cost	295243	238236
Discounted Cost	255295	211869

Table 5: Cost estimates of PCI versus CABG for a life time horizon

When comparing the costs and Quality Adjusted Life Years gained, over the first year; ICER of PCI versus CABG is -5,22,023, which is primarily due to more upfront cost of CABG as compared to PCI and comparatively lesser peri-procedural complications in PCI than CABG.

Table 6: ICER of PCI versus CABG over one year time horizon

Cost with PCI	129973	Incompostal Cost		ICER
Cost with CABG	131339	Incremental Cost	Incremental QALYs	
QALYs with PCI	0.839	-1366	0.002617	-5,22,023
QALYs with CABG	0.837		01002027	0,,0_0

In the five years' time horizon, PCI yields less health outcome in terms of QALYs lived and has the incremental cost of INR 9464. As shown in the table below, PCI spends incremental cost of 283196 INR per Quality Adjusted Life Year lost as compared to CABG. Hence, at five years' time horizon, CABG dominates over PCI.

Cost with PCI	160083			ICER
Cost with CABG	150619	Incremental Cost	Incremental QALYs	
QALYs with PCI	3.857	0464	-0.033419	2 92 106
QALYs with CABG	3.891	9464		-2,83,196

 Table 7: ICER of PCI versus CABG over five year time horizon

At ten years' time horizon, there is incremental cost of 26742 INR with PCI over CABG and QALYs lived with CABG are more over PCI. Here, PCI spends incremental cost of 249373 INR per Quality Adjusted Life Year lost. Hence, at ten year also, CABG dominates as PCI is not a cost-effective strategy as compared to CABG over ten years' time horizon.

Table 8: ICER of PCI versus CABG over ten year time horizon

Cost with PCI	202948	Incremental Cost	Incremental QALYs	ICER
Cost with CABG	176206	Incremental Cost		
QALYs with PCI 6.827		26742	-0.107237	-2,49,373
QALYs with CABG	6.934	20742	-0.107237	-2,43,373

At 20 years, the incremental cost in in PCI as compared to CABG is 43426 and QALY lost in PCI scenario as compared to CABG is 0.2486. By calculating ICER, PCI spends incremental 174674 INR per QALY lost as compared to CABG. So, at twenty years' time horizon, which also corresponds to the life time horizon, PCI is the cost-ineffective strategy as compared to CABG as depicted in the table below.

Cost with PCI255295Incremental CostIncremental QALYsIncremental QALYs<

Table 9: ICER of PCI versus CABG over twenty year time horizon

One Way Sensitivity Analysis

In such model based economic evaluations, there is always a degree of uncertainty due to various factors such as patient heterogeneity, methodological structural model and parameter uncertainties which would influence cost-effectiveness outcome. We have tried to address the variation in the input parameters from some different country by doing One Way Sensitivity Analysis. This OWSA was conducted by varying key parameters by twenty percent of their base value; except for mortality of PCI and CABG follow-up, which was varied to the upper and lower bound of studies included in the meta-analysis. This sensitivity analysis was done for lifetime horizon (twenty year) scenario of this economic model.

Figure 4. One Way Sensitivity Analysis results for lifetime horizon

Probabilistic Sensitivity Analysis

We also did a probabilistic sensitivity analysis to address the uncertainty in the input parameters by looking into joint effect of this variance on cost-effectiveness results. With help of Visual Basics, we ran 1000 monte carlo simulations in MS Excel. Every time, random set of parameters based on their upper and lower bound were fed into the model to generate the incremental cost and incremental quality adjusted life years, which were then plotted on a graph against base case results. Out of these simulations, 420 results fall into North-West quadrant, which means to be dominated i.e. not cost effective due to higher incremental cost but lesser quality adjusted lifeyears lived. Out of 1000, 14 results fall in South-East quadrant signifying less cost and more quality adjusted life years lived with PCI, proving it to be cost effective than CABG. Rest 566 simulation results fall in either North-East or South-West quadrant, which further needs comparison with cost-effectiveness threshold of the region. Out of these 566 simulations, when compared with cost-effectiveness threshold for India (which is one times per capita GDP i.e. 1,50,000) only 285 simulations fall in cost-effective category.

Based on the results of this probabilistic sensitivity analysis, considering effect joint variation in input parameters of the model; CABG is cost-effective than PCI in 715 simulations out of 1000. It conveys that PSA results favor CABG in 71.5% of cases and PCI is favored only in 28.5% of cases when compared to CABG in LMCAD.

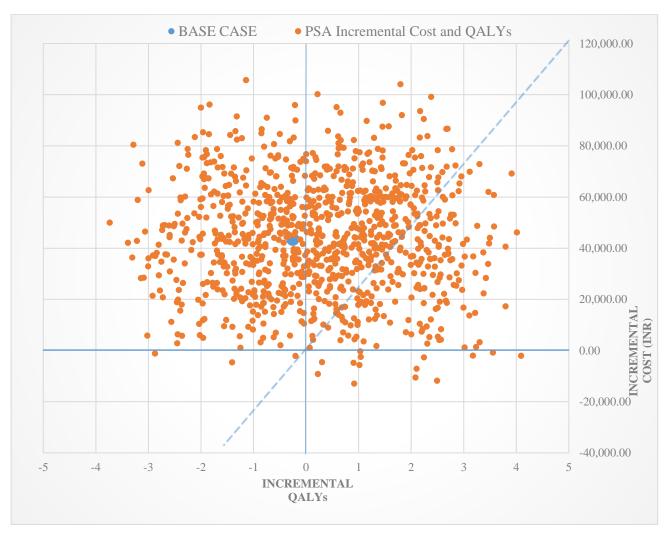


Figure 5. Results of 1000 PSA iterations of Incremental Cost (INR) and QALYs with PCI as compared to CABG

Figure 6 shows the cost effectiveness acceptability curve explaining the relationship of costeffectiveness threshold with results of probabilistic sensitivity analysis. This shows that probability of interventions to be cost-effective at threshold of one times per capita GDP is around 28% and it goes only up to 30% even at threshold as high as three times per capita GDP of India.

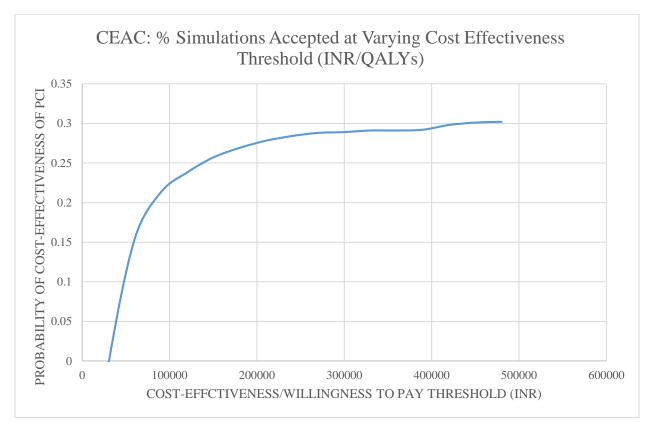


Figure 6. Cost-effectiveness acceptability curve of PCI as compared to CABG based on PSA

Conclusion & Recommendations

As evident from results of our study, upfront cost of CABG is more in the first year as compared to PCI with and there is not much difference in the clinical outcomes of the these interventions. However, in the subsequent years, i.e. 5 years horizon, 10 years horizon and lifetime (twenty years' time) horizon; CABG is more clinically effective and also cost-effective as compared to PCI. Although, there is only a marginal difference in the health outcome of CABG over PCI in management of stable LM CAD patients in terms of QALYs gained, the overall cost of CABG is significantly less as compared to PCI due to difference in the need of repeat revascularization subsequently.

Thus, this study recommends that in cases of Left Main Coronary Artery Disease, the mainstay treatment should be centered on Coronary Artery Bypass Graft. PCI may be considered as the second line of treatment in cases requiring revascularization as per clinical experts' opinion.

Limitations and Assumptions

Since we considered an abridged societal perspective for this economic evaluation, we did not account for productivity loses for PCI and CABG. There could be significant difference in the productivity loss in these two management options because of significant difference in hospital stay. This analysis uses the clinical effectiveness parameters form studies/trials which are not India specific, so there could be some variation in the health outcomes of PCI or CABG. This analysis uses utility weights from outside India and these utility weights may not truly represent preferences of Indian patients. This economic evaluation does not includes the subgroup analysis for diabetic and other sub-groups due to lack of powered data which could give generalizable results. While estimating the health outcomes for extended periods, we assumed that effectiveness parameters in subsequent years will remain same; which may not be the case in the real world. Also, the cycle length has been set at 1 year for the model assuming that the frequency of events is once per year for the patients, which will not be in reality. The model was run till the patient cohort reached the age of 70. This was done keeping the life expectancy of our population in mind, i.e., 69.2 years. In terms of utility values for each health state and event also, in the absence of a country specific value set, the values taken from literature have been assumed to hold true for our study population. These values are from developed countries where the socio-demographics and disease burden and progression might differ from our population. Cost for PCI and CABG has been directly taken from the PMJAY package rates. These cover all the expenses incurred in the health systems and have been taken so as to have generalizable results.

REFERENCE

- Prabhakaran D, Jeemon P. Global Burden of Cardiovascular Disease Cardiovascular Diseases in India. 2016:1605-1620. doi:10.1161/CIRCULATIONAHA.114.008729
- 2. Mishra S, Ray S, Dalal JJ, et al. Management standards for stable coronary artery disease in India. *Indian Heart J*. 2016;68:S31-S49. doi:10.1016/j.ihj.2016.11.320
- Gupta R, Mohan I, Narula J. Trends in Coronary Heart Disease Epidemiology in India. Ann Glob Heal. 2016;82(2):307-315. doi:10.1016/j.aogh.2016.04.002
- Ardeshna DR, Bob-manuel T, Nanda A, et al. Asian-Indians : a review of coronary artery disease in this understudied cohort in the United States. 2018;6(7):4-10. doi:10.21037/atm.2017.10.18
- Huang L, Zhang L, Li T, Liu Y, Wang Y, Liu B. Human Plasma Metabolomics Implicates Modified 9-cis-Retinoic Acid in the Phenotype of Left Main Artery Lesions in Acute ST-Segment Elevated Myocardial Infarction. *Sci Rep.* 2018;(July):1-11. doi:10.1038/s41598-018-30219-w
- Manzil AS, Rajan JS, Radhakrishnan V. Clinical Outcomes in Patients Undergoing Triple-Vessel Angioplasty for Symptomatic Coronary Artery Disease. 2015;(October):746-752.
- Duggal B, Subramanian J, Duggal M, et al. Survival outcomes post percutaneous coronary intervention : Why the hype about stent type ? Lessons from a healthcare system in India. 2018:1-14.
- 8. Article O. for Left Main Coronary Disease. 2019:1-11. doi:10.1056/NEJMoa1909406
- 9. Spence MS, Erglis A, Menown IBA, et al. Articles Percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis : updated 5-year outcomes from the randomised ,. 2019;6736(19):1-9. doi:10.1016/S0140-

6736(19)32972-1

- 10. Manuscript A. NIH Public Access. 2015;168(5):690-697.doi:10.1016/j.ahj.2014.07.029.Rationale
- Mohanan PP, Mathew R, Harikrishnan S, et al. Presentation , management , and outcomes of 25 748 acute coronary syndrome admissions in Kerala , India : results from the Kerala ACS Registry. 2013:121-129. doi:10.1093/eurheartj/ehs219
- Pagidipati NJ, Huffman MD, Jeemon P, Gupta R, Negi P. Association between Gender , Process of Care Measures , and Outcomes in ACS in India : Results from the Detection and Management of Coronary Heart Disease (DEMAT) Registry. 2013;8(4):1-7. doi:10.1371/journal.pone.0062061
- Ahmad Y, Howard JP, Arnold AD, et al. Mortality after drug-eluting stents vs . coronary artery bypass grafting for left main coronary artery disease : a meta-analysis of randomized controlled trials. 2020:1-8. doi:10.1093/eurheartj/ehaa135
- Ten-Year Outcomes After Drug-Eluting Stents Versus Coronary Artery Bypass Grafting for Left Main Coronary Disease. 2020:1-10. doi:10.1161/CIRCULATIONAHA.120.046039
- 15. Thuijs DJFM, Kappetein AP, Serruys PW, et al. Articles Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease : 10-year follow-up of the multicentre randomised controlled SYNTAX trial. 2019;6736(19):1-10. doi:10.1016/S0140-6736(19)31997-X
- Boudriot E, Thiele H, Walther T, Liebetrau C. Randomized Comparison of Percutaneous Coronary Intervention With Sirolimus-Eluting Stents Versus Coronary Artery Bypass Grafting in Unprotected Left Main Stem Stenosis. JAC. 2011;57(5):538-545.

doi:10.1016/j.jacc.2010.09.038

- Adam B, Karlin A, Pickard MFJAS. Comparing responsiveness of the EQ-5D-5L, EQ-5D-3L and EQ VAS in stroke patients Comparing responsiveness of the EQ-5D-5L, EQ-5D-3L and EQ VAS in stroke patients. 2014;(November). doi:10.1007/s11136-014-0873-7
- Puskas JD, Ben-yehuda O, Es G Van, Taggart DP. Quality-of-Life After Everolimus-Eluting Stents or Bypass Surgery for Left-Main Disease. 2017;70(25). doi:10.1016/j.jacc.2017.10.036
- Lee PH, Park H, Lee JS, Lee S, Lee CW. Meta-Analysis Comparing the Risk of Myocardial Infarction Following Coronary Artery Bypass Grafting Versus Percutaneous Coronary Intervention in Patients With Multivessel or Left Main Coronary Artery Disease. *Am J Cardiol.* 2019;124(6):842-850. doi:10.1016/j.amjcard.2019.06.009
- 20. José P, Andrade N De, Luiz J, et al. Original Article Stent versus Coronary Artery Bypass Surgery in Multi-Vessel and Left Main Coronary Artery Disease : A Meta-Analysis of Randomized Trials with Subgroups Evaluation. 2018:511-523. doi:10.5935/abc.20190027
- 21. Perrin N, Bortolussi G, Guariento A. PCI vs. CABG for left main coronary artery disease: a meta-analysis. *J Thorac Cardiovasc Surg*. 2020. doi:10.1016/j.jtcvs.2020.04.010
- Agrawal A, Gandhe MB, Gandhe S, Agrawal N. Study of length of stay and average cost of treatment in Medicine Intensive Care Unit at tertiary care center. 2017:24-29. doi:10.4103/2394-2010.199329
- 23. Kwatra G, Kaur P, Toor G, et al. Cost of stroke from a tertiary center in northwest India.
 2013;61(1). doi:10.4103/0028-3886.125270