

ESTABLISHED BY GOVT. OF GUJARAT AND PHFI

Health Technology Assessment of Project Lifeline – ECG Facility at Primary Health Centre Level in Ahmedabad District of Gujarat

Regional Resource Centre for Health Technology Assessment (HTA-RRC)

Indian Institute of Public Health Gandhinagar (IIPHG) Gujarat, India

Research Team					
Principal Investigator					
Dr Somen Saha	Associate Professor, Indian Institute of				
	Public Health Gandhinagar				
Co- Inv	estigator				
Dr Komal Shah	Assistant Professor, Indian Institute of Public				
	Health Gandhinagar				
Dr Apurvakumar Pandya	Economic Evaluation Specialist, Indian				
	Institute of Public Health Gandhinagar				
Dr Priya Kotwani	Scientist-C, Indian Institute of Public Health				
	Gandhinagar				
Dr. Nikita Vadsaria	Research Officer, Indian Institute of Public				
	Health Gandhinagar				
Ms. Yogini Kandre	Programme Associate, Indian Institute of				
	Public Health Gandhinagar				
Mr. Devang Raval	Programme Associate, Indian Institute of				
	Public Health Gandhinagar				
Dr. Malkeet Singh	Health Economist at HTAIn-Department of				
	Health Research, Ministry of Health and				
	Family Welfare, New Delhi				
Dr Kriti Tyagi	Scientist-C at Department of Health				
	Research, Ministry of Health and Family				
	Welfare, New Delhi				
Dr. Kavitha Rajsekhar	Scientist-E at Department of Health				
	Research, Ministry of Health and Family				
	Welfare, New Delhi				

CONTENTS

List of Abbreviations	. 3
ABSTRACT	. 4
Background	. 4
Methods	. 4
Findings	. 4
Conclusion	. 4
INTRODUCTION	. 6
Current Scenario	. 7
Project Lifeline	. 7
ECG Device and Beneficiaries	. 7
Training for Project Lifeline	. 8
Aims and Objectives	. 8
Policy Question	. 8
Aim	. 8
Objectives	. 8
METHODS	. 9
FINDINGS	14
Cost details	14
Cost-effectiveness Analysis	17
One-Way Sensitivity Analysis	18
Budget Impact Analysis	20
DISCUSSION	23
Limitations	23
CONCLUSION	24
REFERENCES	24

List of Abbreviations

Abbreviations	Full Form
AI	Artificial Intelligence
CBAC	Community Based Assessment Checklist
СНС	Community Health Centre
CVD	Cardiovascular Disease
DH	District Hospital
ECG	Electrocardiogram
GDP	Gross Domestic Product
ICER	Incremental cost-effectiveness ratio
LYs	Life Years saved
MC	Medical College
NCD	Non-Communicable Disease
OOPE	Out-of-pocket Expenditure
PMJAY	Pradhan Mantri Jan Arogya Yojana
РНС	Primary Health Centre
QALY	Quality Adjusted Life Years
SDH	Sub-district Hospital

ABSTRACT

Background

The prime purpose of the report is to assess the appropriateness and feasibility for scale up of Project Lifeline. The report summarizes cost involved with implementation of the project from societal perspective. Under this initiative, District Panchayat Ahmedabad introduced electrocardiogram (ECG) machines among all 40 primary health centres (PHCs)for screening of cardiac abnormalities. Linkage for ECG reading were set up with physicians through IT/Webbase (WhatsApp/App) for identification and confirmation of cardiovascular diseases (CVDs) and for providing primary management (with thrombolytic and anti-platelet like Aspirin) coupled with proper timely referral.

Methods

Cost data Project Lifeline was assessed using societal. An incremental costing approach was adapted for the study. The cost-effectiveness analysis was done using decision analytic modelling. The program cost was obtained from the implementers under various heads - device cost, training cost and private physician costs, whereas out-of-pocket cost was documented from secondary sources. Transition probabilities were derived from primary data supported by expert opinion for the intervention arm while systematic search of literature was undertaken to derive transition probabilities for the control arm.

Findings

The study results found that though proportion of patient opting for any further management of disease after positive screening through ECG is relatively low, availability of the screening facility at primary health care level have enabled early identification of the disease in relevant high-risk cases that has resulted in prompt management.

The cost-effectiveness of the intervention is evaluated based on Life Years saved due to early screening of cardiac abnormalities. The initiative was found to be cost-effective for screening of high-risk symptomatic adults (ICER **2,299.06**)

Conclusion

Cost-effectiveness analysis clearly shows that the facility to screen cardiac abnormality at PHC level is highly recommended for high risk adult and symptomatic cases. The screening facility at

primary health care level may lead to early identification of the disease and result in prompt management.

INTRODUCTION

Globally 70% of all deaths are due to Non-Communicable Diseases (NCDs).¹ Cardiovascular disease (CVD) is responsible for premature deaths (<70 year) among four major NCDs accounting 80% mortality. In India, 26% risk of death can be attributed to CVDs. 23% of those with heart attacks do not survive due to delay in treatment leading to death of around 1.7 million Indians.²

The first hour after the onset of heart attack is called the golden hour. Appropriate action within the first 60 minutes of a heart attack can reverse its effects and if the person reaches the hospital and gets treated within this period she/he can expect near-complete recovery. Hence to reduce the damage, it is important to get to the hospital as soon as possible. An Electrocardiogram (ECG) monitor can help to assess the heart rhythm, so that they can be given prompt screening and timely referral. Prompt screening & Early identification of true cases and prompt management especially with thrombolytic and aspirins with timely referral in "GOLDEN HOUR" is of utmost important to prevent permanent heart damage and thereby deaths. Ahmedabad contributes average 25% of all state CVD cases attended by an emergency health service - 108 EMRI.

Portable, hand-held ECG machines are evaluated for its use for screening of cardiac abnormalities in primary care settings in various high-risk population. It was found be cost and clinically effective strategy of screening in patients of atrial fibrillation and aged population (>70 years) as it significantly reduces risk of stroke and any other cardiac event.³

Economic evaluation studies have been undertaken for the use of ECG mainly for screening of atrial fibrillation in various parts of the world. Studies reported that opportunistic screening for atrial fibrillation in primary care has potential to be cost-effective.^{4,5} However, the competency of primary care practitioners and nurses for interpreting the ECG readings needs to be considered for implementing such screening program. Begg et al., 2016 in their study suggested that primary care practitioners were less experienced and less confident with ECGinterpretation than cardiologists, and requiresupport in this area.⁶ In cases with limited capabilities, solutions such as telemedicine should be thought-out. Tele cardiology, by bringing expert ECG interpretationto primary care, has the potential to save time, money and lives. It empowers primary care practitioners, providing arobust diagnostic tool to facilitate the management cardiac patients in the community. Both physiciansand patients benefit in terms of ease of access, speed of diagnosis, efficiency of management andthe freeing up of resources.⁷

Usage of portable ECG facility in various forms such as single led, 12 led hand held instruments has been studied by many for effective management and early identification of cardiac abnormalities in various health care settings.^{3,8,9}

Current Scenario

- ECG facility is available only in Medical Colleges (MC), District Hospitals (DH) and Sub-District Hospitals (SDH) & Community Health Centers (CHC) in government.
- > Primary Health Centers (PHC) are not equipped with ECG facility
- Ahmedabad District in Gujarat initiated a pilot project to equip all its PHCs with ECG facility – first time in Gujarat.

Project Lifeline ECG Device and Beneficiaries

Figure 1: ECG Device used in Project Lifeline

The 12-Lead Digital ECG is compact A4 size resting electrocardiograph system perfect as m-health applications because it makes patient diagnostic information more readily available for both the clinician and remote consulting physician using an app. With automatic ECG measurements and flexible on-screen reporting functions, this digital ECG enables clinicians to spend less time documenting and

more time collaborating with the physician reviewing the results. The device has 5" Colour Thin Film Transistor (TFT) and display enables reviewing of the report and also it has inbuilt PDF convertor which facilitate transfer of ECG from the device to USB in PDF format Interpretation Facility. Various printing formats 12 Lead simultaneous acquisition are available. More than 50 ECG can be carried out on fully charged battery.

All 40 Primary Health Centre of Ahmedabad districts were equipped with 12 Channel Electro Cardiogram machine. Linkage was established with physicians for reading ECG through IT/Webbased interface (WhatsApp/App) for identification and confirmation of Cardiovascular Diseases and provide primary management (with thrombolytic and anti-platelet like Aspirin) coupled with timely referral. Incentives were provided to the private physicians involved in the project for timely ECG reading and guidance. The Project Lifeline aims to screen all the adults having diabetes, hypertension, cardio-metabolic syndrome, family history of cardiac disease or signs and symptoms suggestive of cardiovascular disease. The purpose of this evaluation study was to assess the appropriateness and feasibility for scale up of Project Lifeline.

Training for Project Lifeline

The PHC Medical Officers across all the 40 PHCs of Ahmedabad district were given one-day training (6 hours) where they were informed of the objectives of Project Lifeline, basic signs and symptoms of cardiovascular disease, identifying abnormalities based on ECG reading. Apart from this they were trained to operate the ECG device from the very basics of switching on the device, assembling its parts, loading ECG strip into the device, placement of 12 leads and how to transmit the readings to the technical experts for the purpose of reporting using mHealth application. The Medical Officers then trained the PHC staff on the same within 2 to 3 days of receipt of ECG device at the PHCs.

Aims and Objectives

Policy Question

Is Project Lifeline cost-effective and feasible for scale up?

Aim

To undertake Health Technology Assessment of Project Lifeline

Objectives

- 1. Assessing the cost of introducing portable ECG facility at PHC for screening of cardiovascular disease
- 2. Assess key outcome indicators for measuring intervention impact
- 3. Estimate cost-effectiveness and budget implications of Project Lifeline

METHODS

The study, aimed to determine the feasibility and cost-effectiveness of Project Lifeline wherein PHCs are equipped with portable ECG technology to identify CVD.

Cost-effectiveness analysis for Project Lifeline was done using decision analytic modelling for high risk adult and symptomatic patients. A decision tree was parameterized on MS-Excel spreadsheet to estimate the incremental cost-effectiveness ratio.

For the purpose of assessing the impact of Project Lifeline, various outcome indicators were measured. Number of patients screened using portable ECG device and number of patients identified with abnormality were derived from the secondary data maintained at District Panchayat, Ahmedabad. We conducted a survey of the patients screened positive for abnormality to document the type of ECG abnormalities and if they were diagnosed for CVD. Table 1 presents details of target groups underwent screening.

	Total	Pregnant Women	High Risk and Symptomatic Adults	Children
Cases Screened	12105	10241	1836	26
Abnormal Cases	208	127	73	10
Cases underwent any treatment (medical management and angiography & medical management)	29	1	20	08

Based on the Systematic Review findings, feedback from TAC members and stakeholder consultation, we did not take pregnant women and children for modelling.

The type of ECG abnormalities identified during screening were categorised into five major disorders based on the primary data and opinion from the practitioners. The table below shows various ECG abnormalities found in our primary data and their categorization in various disorders. The five cardiovascular disorder reported in the high-risk adults mentioned in the table 2 were considered for building the decision tree model.

Cardiovascular Disorders	ECG Abnormalities
Arrhythmia	 Supraventricular Arrhythmia
	Ventricular Arrhythmia
Action Sequence Conduction Defect	 Atrioventricular Conduction Defect
	(Block)
	Bundle Branch Block
Increase in wall thickness or size of Atria or	 Atrial Hypertrophy
Ventricles	Ventricular Hypertrophy
Myocardial Ischemia	Myocardial Ischemia or Infarction
Others	Valvular Issues

Table 2: Categorization of ECG abnormalities based on expert opinion

The model structure of decision-tree model is as shown in the figure below

Figure 2: Decision Tree for High Risk Population

For cost-effectiveness analysis, the data on cost and transition probabilities were gathered to populate the decision-tree model.

Derivation of Cost Data

The cost-effectiveness analysis was done using societal perspective. Hence, both the program cost i.e. the cost borne by the health system for implementing Project Lifeline as well as the direct and indirect medical cost incurred by the patients were taken into consideration.

The program cost was estimated under two cost heads i.e., capital cost and annual implementation cost. Capital costs included start-up costs such as ECG equipment and Orientation training cost since the launch of the program. The capital cost including start-up cost was annualized assuming life year of ECG device to be 10 years. Whereas the recurrent costs consist of annual maintenance cost, incentives provided to physicians for interpretation of ECG reading, shared human resource cost and other contingency costs.

In order to estimate the programmatic cost, financial records of District Panchayat, Ahmedabad were used except for shared human resource cost. Time-motion study was undertaken to estimate the shared human resource cost.

Both the recurrent and capital costs were collected and summed up to arrive at total cost. All costs are presented in INR. Costs were converted to constant values and reported as annualized cost in 2018- 2019 price.

In addition to the programmatic cost, the Out-of-pocket expenditure (OOPE) incurred by the patient was estimated using published literature¹⁰which comprised of cost of medications, transportation cost, wage loss of the patient and the care-taker.

For deriving the cost of treatment, a group of physicians were consulted for their opinion on the line of treatment. The cost of interventions (as suggested by the experts) were taken from Pradhan Mantri Jan Arogya Yojana (PMJAY) Package.¹¹ Since the cost for undergoing diagnostic test was already included in the PMJAY, we have not added additional diagnostic cost to avoid over-calculation of the treatment cost.

Derivation of data on Transition Probabilities

Transition Probabilities for the intervention arm were derived based on the data collected and the expert opinion sought from various practitioners on indicators mentioned below-

- Total number of high-risk adult and symptomatic patient underwent ECG screening at PHC
- > Number of patients screened for abnormality through ECG screening
- Number of patients referred and underwent diagnostic test
- Type of ECG abnormality
- Type of treatment

However, the data on survival rates for each abnormality were derived on applying hazard ratio¹²to the survival rates reported in the published literature for each cardiovascular disorder mentioned in the table 2.

Whereas the transition probabilities in the control arm were derived through systematic search of published literature. Indian data was used for all the transition probabilities except for survival rate of Action Sequence Conduction Defect which was obtained in global context. In addition to this, due to unavailability of disorder specific data on QALY, the cost-effectiveness analysis was done using Life Years saved as an outcome indicator.

For the purpose of estimating Life Years saved, the average age of high-risk adults who underwent the ECG screening was 54.6 years (average age of cohort in intervention arm) as per the collected data while that for the control arm was considered as 57.5 year as mentioned in the CREATE registry.¹⁹

It was assumed that the loss to follow-up of abnormal cases screened was negligible considering that the patients were highly motivated to seek healthcare for their condition as they themselves came to the PHCs for treatment. In addition to this, PHC Medical Officer were asked to follow-up the cases screened positive for abnormality to ensure they visited higher healthcare centres and have undergone diagnostic tests and were on treatment.

We also conducted one-way sensitivity analysis of various variables in the model to determine the impact of changes on incremental cost-effectiveness ratio. Sensitivity analysis was conducted using upper and lower estimates for mortality and the cost of treatment.

We have also performed the Budget Impact Analysis for nation-wide scale-up. The cost

projections have been made for 1st Year, 2nd Year, 5th Year and 10th year considering the useful life of ECG device to be 10 years. We have not considered OOPE in the Budget Impact Analysis. Additional costs included shared HR and tertiary care cost (diagnostic & management). In contrast to cost-effectiveness analysis, which measures both cost and clinical outcomes without regards to underlying disease prevalence, budget impact models focus exclusively on cost and adjust for the underlying prevalence of disease. Depending on the overall budget, structured plans can be made as to whether the roll-out is made in a single phase or in multiple phases.

FINDINGS

Cost details

Program cost: The table below details the cost incurred towards implementing this program. The cost of ECG machine has been annualized in order to estimate the programmatic cost.

Items	Units	Unit price	Annualized cost (INR)
ECG Machines	40	70,000	4,20,000
Maintenance and Consumables	40	3500	1,40,000
Expert Consultation	12,105	30	3,63,150
Contingency	-	-	75,000
Training	-	-	75,000
Shared HR Cost			6,19,777
Total			16,92,927

Table 3: De	etails of the	Program c	cost (2018-19	Prices)
-------------	---------------	-----------	---------------	-----------------

The time-motion study was used to estimated shared human resource cost. It was found out that an approximate time of 12 minutes of staff nurses was used towards Project Lifeline and its estimated annual cost was 15494.43 INR.

The annualized cost incurred by the program implementers was estimated to be 16.92 lakhs. With this investment, around 12,105 patients were screened. <u>The calculated cost per cases screened</u> <u>amounted to (INR) 139.85</u>

Data Used for Populating the Decision Tree Model

The table 3 below shows various costs that were considered for purpose of decision analytic modelling in intervention and control arm.

Table 4:	Cost	Data	used t	o p	opulate	the mo	del fo	r High	Risk P	opulation
					1					1

Parameter	Cost	Calculation	
Intervention Arm			
Cost of Screening	139.85	Derived from Primary Data	

Cost of Diagnosis	0	Included in PMJAY package
Out-of-pocket Expenditure	63,539	Chauhan & Mukherjee,
(OOPE)		2016 ¹⁰
Cost of Treating Arrhythmia	1,28,728.85	Cost of Treatment as per
Cost of Treating Action Sequence		PMJAY package data +
Defect	3,75,478.85	OOPE + Cost of Screening
Cost of Treating Hypertrophy	1,56,328.85	and Diagnosis
Cost of Treating MI	1,73,478.85	
Cost of Treating Other Disorders	70,078.85	
	Control Arm	
Cost of Treating Arrhythmia	1,28,589	Cost of Treatment as per
Cost of Treating Action Sequence		PMJAY package data +
Defect	3,75,339	OOPE+ Cost of Diagnosis
Cost of Treating Hypertrophy	1,56,189	
Cost of Treating MI	1,73,339	
Cost of Treating Other Disorders	69,939	

Table 5: Transition Probabilities used to populate the model for High Risk Population

Transition from	Transition To	Transition	Reference
	Probabili		
	Interver	ntion Arm	
ECG Screening	Screened Positive	0.04	Primary Data
ECG Screening	Screened Negative	0.96	Primary Data
Screened Positive	Diagnosed Positive	0.91	Primary Data
Screened Positive	Diagnosed Negative	0.09	Primary Data
Diagnosed Positive	Arrhythmia	0.158	Primary Data of ECG followed
			by Expert Opinion
Diagnosed Positive	Action Sequence	0.211	Primary Data of ECG followed
	Disorder		by Expert Opinion
Diagnosed Positive	Hypertrophy	0.316	Primary Data of ECG followed
			by Expert Opinion

Diagnosed Positive	Myocardial	0.263	Primary Data of ECG followed
	Infarction and		by Expert Opinion
	Ischemia		
Diagnosed Positive	Others	0.053	Primary Data of ECG followed
			by Expert Opinion
Arrhythmia	Morbidity	0.776	Derived on applying Hazard
Arrhythmia	Mortality	0.208	Ratio on probabilities in the
Action Sequence	Morbidity	0.955	control arm
Disorder			
Action Sequence	Mortality	0.040	
Disorder			
Hypertrophy	Morbidity	0.886	
Hypertrophy	Mortality	0.104	
Myocardial	Morbidity	0.898	
Infarction and			
Ischemia			
Myocardial	Mortality	0.092	
Infarction and			
Ischemia			
Other Disorders	Morbidity	0.999	
Other Disorders	Mortality	0.001	
	Contr	ol Arm	
No ECG Screening	Diagnosed Positive	0.1	Chauhan & Aeri,2013 ¹³
No ECG Screening	Diagnosed Negative	0.9	
Diagnosed Positive	Arrhythmia	0.3566	Bodhke et al., 2019 ¹⁴
Diagnosed Positive	Action Sequence	0.07	
	Disorder		
Diagnosed Positive	Hypertrophy	0.3466	
Diagnosed Positive	Myocardial	0.1966	
	Infarction and		
	Ischemia		
Diagnosed Positive	Others	0.0302	

Arrhythmia	Morbidity	0.786	Sudan et al., 2018 ¹⁵ (Derived			
			Pmorbidity= 1-Pmortality)			
Arrhythmia	Mortality	0.214	Sudan et al., 2018 ¹⁵			
Action Sequence	Morbidity	0.959	Hayashi et al., 2016 ¹⁶ (Derived			
Disorder			Pmorbidity= 1-Pmortality)			
Action Sequence	Mortality	0.041	Hayashi et al., 2016 ¹⁶			
Disorder						
Hypertrophy	Morbidity	0.893	Bahl A, 2013 ¹⁷ (Derived			
			Pmorbidity= 1-Pmortality)			
Hypertrophy	Mortality	0.107	Bahl A, 2013 ¹⁷			
Myocardial	Morbidity	0.905	Sharma & Bhatt, 2018 ¹⁸			
Infarction and			(Derived Pmorbidity= 1-			
Ischemia			Pmortality)			
Myocardial	Mortality	0.095	Sharma & Bhatt, 2018 ¹⁸			
Infarction and						
Ischemia						
Other Disorders	Morbidity	0.999	(Derived Pmorbidity= 1-			
			Pmortality)			
Other Disorders	Mortality	0.001	Derived (Pother = 1-			
			(Parrhythmia+ Pconduction			
			defect+ Phypertrophy +			
			Pmyocardial ischemia)			
Hazaro	d Ratio	0.97	Lindekleiv et al., 2013			

Cost-effectiveness Analysis

Cost-effective analysis for the use of ECG screening device at primary care setting was done based using the decision tree model structure as shown in figure 2.

The results of Cost-effectiveness analysis are shown in table 6 and CE Plane in figure 3 shows the ICER in relation to the Cost-effectiveness threshold.

 Table 6: Incremental Cost-Effectiveness Ratio (ICER) for ECG screening in High Risk

 Population

	Life Years Saved (LYS)	Costs		
ECG Screening	14	7183.64		
No ECG Screening	11	526.16		
ICER	2299.06			

The ECG screening intervention in primary care has proved to be extremely cost-effective for high risk adult and symptomatic population resulting in saving of around 2.90 life-years at an incremental cost of approximately 6657.47

Figure 4: Cost-effectiveness Plane

It is depicted in the figure above that ICER (orange dot) lies in the first quadrant as incremental cost of INR 6657.47 is incurred for saving 2.9 incremental life years.

One-Way Sensitivity Analysis

The results of One-Way Sensitivity Analysis are shown in the Tornado Diagram below

Tornado graph showing results of one-way sensitivity analysis derived from probabilistic method. These figures indicating parameters which have the largest effect on ICER when they are varied individually.

Budget Impact Analysis

Budget Impact Analysis (BIA) have been performed to estimate the cost for roll-out of Project Lifeline at District, State and National levels. The BIA has been performed at 2020 Prices.

Table 7: Budget Implication

Sr. No.	Budget Head	Items	Unit Definition	Units	Unit price	Cost at 1 st year	Cost at 2 nd Year	Cost at 5 th Year	Cost at 10 th Year
District Level (2020 Prices)									
A	Capital Cost	ECG Machines	PHC	40	79,000	31,60,000		-	
		Total (A)				32,44,647	-	46,082	 _
В	Recurrent - Cost	Maintenance and Consumables	РНС	40	3,950	1,58,000	1,61,397	1,72,033	1,95,452
		Expert Consultation	Individuals	73	34	2,482	2,535	2,702	3,070
		Contingency	District	1	84,647	84,647	86,467	92,165	1,04,712
		Human Resource Cost	District	1	6,99,495	6,99,495	7,14,534	7,61,620	8,65,303
		Additional Cost at Tertiary Care (Including Diagnosis and Management	Individuals	67	6,720	4.50.219	4,59,899	4.90.205	5,56,939
Total (B)					13,94,843	14,24,832	15,18,724	17,25,476	
Grand Total				46,39,490	14,24,832	15,64,806	17,25,476		

State Level (2020 Prices)									
_	Capital	ECG Machines	РНС	1,474	79,000	11,64,46,000	-	_	-
A	Cost	Training	District	33	84,647	27,93,351	-	15,20,719	-
Total (A)					11,92,39,351	-	15,20,719	-	
		Maintenance and Consumables	РНС	1,474	3,950	58,22,300	59,47,479	63,39,399	72,02,417
	Recurrent Cost	Expert Consultation	Individuals	706	34	24,004	24,520	26,136	29,694
Р		Contingency	District	33	84,647	27,93,351	28,53,408	30,41,438	34,55,487
Б		Human Resource Cost	District	33	6,99,495	2,30,83,335	2,35,79,627	2,51,33,446	2,85,55,007
		Additional Cost at Tertiary Care							
		(Including Diagnosis and Management	Individuals	642	6,720	43,15,104	44,07,879	46,98,343	53,37,956
						3 60 38 094	3 68 12 913	3 92 38 762	4 45 80 561
Grand Total						15,52,77,445	3,68,12,913	4,07,59,481	4,45,80,561
National Level (2020 Prices)									
A	Capital	ECG Machines	РНС	24.049	79.000	1.89.98.71.000	-	-	_
	Cost	Training	District	720	84.647	6.09.45.840	_	3.31.79.326	_
	Total (A)				1,96,08,16,840	-	3,31,79,326	-	

	Recurrent	Maintenance and Consumables	РНС	24,049	3,950	9,49,93,550	9,70,35,911	10,34,30,257	11,75,10,812
		Expert Consultation	Individuals	14.017	34	4.76.578	4.86.824	5.18.905	5.89.546
						.,, .,, .,	.,		
р		Contingency	District	720	84,647	6,09,45,840	6,22,56,176	6,63,58,651	7,53,92,436
в	Cost	Human Resource							
		Cost	District	720	6,99,495	50,36,36,400	51,44,64,583	54,83,66,095	62,30,18,325
		Additional Cost at							
		Tertiary Care							
		(Including Diagnosis							
		and Management	Individuals	12,755	6,720	8,57,16,307	8,75,59,208	9,33,29,069	10,60,34,492
Total (B)					74,57,68,675	76,18,02,702	81,20,02,977	92,25,45,611	
Grand Total				2,70,65,85,515	76,18,02,702	84,51,82,302	92,25,45,611		

The Budget Impact Analysis depicts budget allocation for 1^{st} year, 2^{nd} year, 5^{th} year and 10^{th} year. The budget of 1^{st} year is on the higher side as compared to the rest of the years as major capital investment is required in the first year of program scale-up. The budget for 2^{nd} , 5^{th} , and 10^{th} year depicts the annual implementation cost that will be incurred. In addition, the budget of 5^{th} year is estimated by taking into account the need for short orientation training to the health workers.

The state-wide scale up cost across 1474 PHCs in 33 districts of Gujarat for Project Lifeline is estimated to be around 15.52Crores while nationwide scale up cost was calculated for 24029 PHCs (2012 data) and 720 districts. This budget is calculated by projecting the annualized cost of implementing Project Lifeline in Ahmedabad district.

DISCUSSION

Opportunities to screen coronary heart disease and its risk factors are missed at primary healthcare level.²⁰ Project Lifeline primarily addresses this concern and screens all the high risk cases for cardiac abnormalities in primary care setting.

Evidence on effectiveness of ECG technology for screening in primary care settings in developing countries are limited. Present study validates the evidence on the cost-effectiveness of ECG screening in primary care setting in Indian context when individuals at high risk of developing CVD undergo screening. To address the limited capabilities of primary care practitioners for interpreting ECG readings, expert consultation using mHealth application through cardiologist for confirming the interpretation was imbibed in the project. The study used decision tree modelling for assessing cost-effectiveness of the Project Lifeline high-risk adult and symptomatic population.

The cost-effectiveness analysis shows that the ICER lies in the 1st quadrant of CE plane which suggests, additional cost of 2299.06 INR is incurred for saving 1 additional life-year saved suggesting the intervention to be potentially acceptable.

Apart from that, it is assumed that with early screening and identification of cardiac abnormality, there may be initial spurt in the case-load at referral health care centres for seeking care but it may eventually lead to reduced burden due to timely management of cases.

Thus, active screening of high-risk population with ECG can be a clinical and cost-effective strategy. In population being characterized at high-risk, active screening through ECG can be an effective strategy.^{4,21,22}

Limitations

For assessing the cost-effectiveness, there were several data gaps in terms of disorder specific data on QALY, OOPE and data on line of treatment in Indian context. Thus cost-effectiveness analysis was performed using Life Years saved as an outcome measure. Considering the project is not matured enough, we could not do follow-up of patients after treatment. Thus, long-term consequences could not be studied and decision analytic modelling was considered appropriate for modelling. The OOPE for CVD in general was considered for modelling. In addition to this, data gap in terms disorder specific management such as line of treatment for Arrhythmia, Action

Sequence Conduction Defect, increase in wall thickness of atria and ventricle, myocardial ischemia, and others disorders was sought by consulting a group of experts. More research is recommended for addressing these limitations in future.

CONCLUSION

Cost-effectiveness analysis clearly shows that the facility to screen cardiac abnormality at PHC level is found to be cost-effective of ICER **2299.06 INR** which is below the GDP per capita of India. The screening facility at primary health care level may lead to early identification of the disease and result in prompt management.

REFERENCES

- WHO. Noncommunicable diseases [Internet]. [cited 2019 Jul 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
- Prabhakaran D, Jeemon P, Roy A. Cardiovascular diseases in India: current epidemiology and future directions. Circulation. 2016 Apr 19;133(16):1605-20.
- Ghazal F, Theobald H, Rosenqvist M, Al-Khalili F. Feasibility and outcomes of atrial fibrillation screening using intermittent electrocardiography in a primary healthcare setting: A cross-sectional study. PloS one. 2018 May 24;13(5):e0198069.
- Tassie E. A model based cost-effectiveness analysis of opportunistic screening for identifying atrial fibrillation with a single lead handheld electrocardiogram monitor in general practices in Scotland.
- Ghazal F, Theobald H, Rosenqvist M, Al-Khalili F. Feasibility and outcomes of atrial fibrillation screening using intermittent electrocardiography in a primary healthcare setting: A cross-sectional study. PloS one. 2018 May 24;13(5):e0198069.
- Begg G, Willan K, Tyndall K, Pepper C, Tayebjee M. Electrocardiogram interpretation and arrhythmia management: a primary and secondary care survey. Br J Gen Pract. 2016 May 1;66(646):e291-6.
- Backman W, Bendel D, Rakhit R. The telecardiology revolution: improving the management of cardiac disease in primary care. Journal of the Royal Society of Medicine. 2010 Nov 1;103(11):442-6.
- 8. Desteghe L, Raymaekers Z, Lutin M, Vijgen J, Dilling-Boer D, Koopman P, Schurmans J, Vanduynhoven P, Dendale P, Heidbuchel H. Performance of handheld

electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Ep Europace. 2016 Feb 17;19(1):29-39.

- Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling JW, Kemper AR, Kubik M, Landefeld CS. Screening for cardiovascular disease risk with electrocardiography: US Preventive Services Task Force recommendation statement. JAMA. 2018 Jun 12;319(22):2308-14.
- Chauhan AS, Mukherjee K. Economic burden of coronary heart disease in North India. International Journal of Noncommunicable Diseases. 2016 Apr 1;1(1):18.
- 11. Ayushman Bharat- Pradhan Mantri Jan Arogya Yojana| Health Benefit Package (available at <u>https://pmjay.gov.in/sites/default/files/2020-01/HBP_2.0-For_Website_V2.pdf</u>)
- Lindekleiv H, Løchen ML, Mathiesen EB, Njølstad I, Wilsgaard T, Schirmer H. Echocardiographic screening of the general population and long-term survival: a randomized clinical study. JAMA internal medicine. 2013 Sep 23;173(17):1592-8.
- Chauhan S, Aeri BT. Prevalence of cardiovascular disease in India and its economic impact-A review. International Journal of Scientific and Research Publications. 2013 Oct;3(10):1-5.
- Bodkhe S, Jajoo SU, Jajoo UN, Ingle S, Gupta SS, Taksande BA. Epidemiology of confirmed coronary heart disease among population older than 60 years in rural central India—A community-based cross-sectional study. Indian heart journal. 2019 Jan 1;71(1):39-44.
- Sudan R, Yaqoob I, Aslam K, Bhat IA, Beig JR, Alai S, Rather H, Rather F. Profile of patients presenting with sustained ventricular tachycardia in a tertiary care center. Indian heart journal. 2018 Sep 1;70(5):699-703.
- 16. Hayashi H, Wu Q, Horie M. Association between Progressive Intraventricular Conduction Disturbance and Cardiovascular Events. PloS one. 2016;11(7).
- 17. Bahl A. Risk stratification and outcome of patients with hypertrophic cardiomyopathy ≥60 years of age. Indian Heart J. 2013;65(3):351–352. doi:10.1016/j.ihj.2013.04.005
- Sharma A and Bhatt M. Evaluation of mortality related to acute myocardial infarction in a tertiary care centre in south India: A descriptive study. International Journal of Medical and Health Research. 2018;4(12):48-52.
- 19. Xavier D, Pais P, Devereaux PJ, Xie C, Prabhakaran D, Reddy KS, Gupta R, Joshi P, Kerkar P, Thanikachalam S, Haridas KK. Treatment and outcomes of acute coronary

syndromes in India (CREATE): a prospective analysis of registry data. The Lancet. 2008 Apr 26;371(9622):1435-42.

- Turkay M, Senol Y, Alimoglu MK, Aktekin MR, Deger N. Missed opportunities for coronary heart disease diagnoses: primary care experience. Croatian medical journal. 2007 Jun;48(3):362-70.
- Desteghe L, Raymaekers Z, Lutin M, Vijgen J, Dilling-Boer D, Koopman P, Schurmans J, Vanduynhoven P, Dendale P, Heidbuchel H. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Ep Europace. 2016 Feb 17;19(1):29-39.
- 22. Jacobs MS, Kaasenbrood F, Postma MJ, van Hulst M, Tieleman RG. Cost-effectiveness of screening for atrial fibrillation in primary care with a handheld, single-lead electrocardiogram device in the Netherlands. Ep Europace. 2016 Oct 11;20(1):12-8.