

Health Technology Assessment in India Department of Health Research, MoHFW

Cost effectiveness of population-based screening for Chronic Kidney
Disease among adults aged 40 years and above with Type 2 Diabetes
Mellitus in Kerala and Puducherry

SUMMARY

Chronic Kidney Disease (CKD) is a major public health problem with increasing incidence and prevalence, associated with a high risk of kidney failure, cardiovascular disease and premature mortality. Patients with type 2 diabetes are more than twice likely to develop CKD as compared to those with type 1 diabetes. Early detection (screening) and treatment of CKD halts the progression to end-stage renal disease (ESRD). But, currently there is no population-based screening for CKD in India. Therefore, we have undertaken a Health Technology Assessment (HTA) study to evaluate the cost-effectiveness of population-based screening for CKD in Kerala and Puducherry among the normotensive type 2 diabetic mellitus patients aged 40 years and above as compared to the current no screeening scenario. We found that population-based screening using spot urine dipstick-microalbuminuria followed by albumin creatinine ratio (ACR) test and serum creatinine, was cost-effective at one time GDP per capita of India. Compared to the current scenario, implementing Scenario 1 would prevent 179 ESRD cases per lakh population over the next ten years.

Introduction

CKD is a condition of structural or functional abnormalities of the kidney, with or without decreased glomerular filtration rate (GFR) for three months or longer. In India, the prevalence of CKD ranges between <1% and 17% (1). Patients with type 2 diabetes (T2DM) are more than twice likely to develop CKD as compared to those with type 1 diabetes (2). In India, CKD is the leading cause of kidney failure or end-stage renal disease (ESRD). About 2.2 Lakh people are diagnosed with ESRD every year (3) and over 90% of patients of them are unable to pay for renal replacement therapy (RRT) who eventually die due to lack of care (4).

Currently, there is no population-based screening for CKD in India. But, studies from Asian countries showed population-based screening for CKD using micro-albuminuria as cost-effective. Therefore, we evaluated the cost-effectiveness of two population-based screening scenarios for CKD in Kerala and Puducherry among the normotensive type 2 diabetic mellitus patients aged 40 years and above, as compared to the current scenario. The two scenarios considered in the study are as follows:

Scenario 1: Spot urine dipstick-albuminuria was done twice with the interval of three months followed by spot urine ACR test and serum creatinine.

Scenario 2: Spot urine ACR test and serum creatinine were done in a parallel manner.

In both scenarios, community healthcare workers (CHW) reach out to the households and measure blood pressure using digital sphygmomanometer in household members who are aged ≥40 years, followed by screening those normotensive members for type 2 diabetes using glucometer. Those normotensive T2DM patients were screened for CKD by either of the two screening scenarios.

Methodology

A decision tree combined with the Markov model was developed to analyze the screening process and changes in the natural progression of CKD under two population-based screening strategies, relative to the current scenario. A mathematical cohort (n=1) of diabetic patients was simulated over a lifetime horizon with an annual cycle. We adopted a societal perspective, taking into account direct and indirect medical expenditure along with income lost due to illness. The input parameters for the model were derived from a WHO STEPS survey, national sample survey, National Health System Cost Database for India and other relevant literature. The incremental cost-effectiveness ratio (ICER) and Net Monetary Benefit (NMB) estimates were generated for both the scenarios along with sensitivity analyses and budget impact analysis.

Results

The ICER per QALY gained for the CKD screening scenario 1 and scenario 2 were ₹ 13,916 and ₹ 14,751, respectively. (Table 1) Both the ICER values were cost-effective at the threshold of the one-time per capita GDP of India. Comparatively, screening scenario 1 was more cost-effective than scenario 2. The NMB for scenario 1 and scenario 2 were ₹ 8.4 crores and ₹ 4.9 crores, respectively. The budget impact analysis showed that the current no screening scenario resulted in a societal cost of ₹ 385 crores in Puducherry and ₹ 9,303 crores in Kerala. Scenario 1 was found to be a low-cost option than the scenario 2 for both the states. If the scenario 1 is implemented, the treatment costs associated with ESRD are expected to go down by ₹ 2.15 crore over of the next ten years, with reduction in the incidence of ESRD cases by 179 per lakh population over ten years. (Table 2)

Table 1: Base case results of CKD screening scenarios

	Non-screening	Screening scenario 1	Screening scenario 2				
Total cost	₹ 45,407	₹ 98,741	₹ 100,096				
Total QALY	7.6	15.2	15.3				
Total life years	10.2	19.6	19.4				
Incremental cost		₹ 53,334	₹ 54,689				
Incremental QALY		7.6	7.7				
Incremental life years		9.4	9.2				
ICER/QALY gained		₹ 7,039	₹ 7,136				
ICER/Life year saved		₹ 5,685	₹ 5,961				
Discounted Estimates							
Total cost	₹ 40,927	₹ 119,139	₹ 89,132				
Total QALY	6.1	11.7	9.4				
Total life years	-	-	-				
Incremental cost		₹ 78,212	₹ 48,205				
Incremental QALY		5.6	3.3				
Incremental life years		-	-				
ICER/QALY gained		₹ 13,916	₹ 14,751				
ICER/Life year saved		₹ 5,138	₹ 5,254				

Table 2: Impact of population-based screening for CKD on the number of ESRD cases and the associated treatment cost over the ten years

Year	Number of ESRD cases		Number of cases prevented		Treatment cost saved (₹ in Lakhs)	
	No	Screening	Screening	Scenario	Scenario 1 vs	Scenario 1 vs
	screening	scenario 1	scenario 2	1 vs 2	No screening	No screening
1	1142	1142	1142	0	0	0
2	1083	1083	1083	0	0	0
3	897	894	894	0	3	18.2
4	658	649	648	-1	9	64.8
5	465	447	446	-2	18	121.0
6	328	303	301	-2	25	170.0
7	236	207	204	-2	30	203.8
8	175	143	141	-3	32	220.3
9	135	102	100	-3	32	221.7
10	107	76	74	-2	31	212.5

Conclusion

The screening scenario 1 is more cost-effective than the scenario 2 for population-based screening for CKD. Given the current health spending of Kerala and Puducherry, both the screening scenarios were not financially feasible for implementation.

Policy implications:

- ➤ If implemented, early detection of CKD through the population-based screening could reduce the incidence of ESRD cases over time.
- Population based CKD screening could reduce the expenditure incurred under the Pradhan Mantri National Dialysis Programme.

Acknowledgment: The study was conducted by Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) Pondicherry, in collaboration with Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvanthapuram.

References

- 1. Varughese S, Abraham G. Chronic Kidney Disease in India: A Clarion Call for Change. Clin J Am Soc Nephrol. 2018 May 7;13(5):802–4.
- Ohta M, Babazono T, Uchigata Y, Iwamoto Y. Comparison of the prevalence of chronic kidney disease in Japanese patients with type 1 and type 2 diabetes. Diabet Med. 2010;27(9): 1017-1023.
- 3. Pradhan Mantri National Dialysis Programme | National Health Portal of India [Internet]. [cited 2021 Jun 1]. Available from: https://www.nhp.gov.in/pradhan-mantri-national-dialysisprogramme_pg
- 4. Varughese S, Abraham G. Chronic Kidney Disease in India: A Clarion Call for Change. Clin J Am Soc Nephrol. 2018 May 7;13(5):802–4
- 5. Bhuwania, S., Saxena, S., Bansal, R., & Goel, R. (2020, July). Gender Bias in Kidney Donation in India: Has It Changed Over the Past 2 Decades? In Transplantation proceedings (Vol. 52, No. 6, pp. 1665-1670). Elsevier.